{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "e98e030e-9467-423f-be5d-deaf3144cfc9",
"metadata": {},
"outputs": [],
"source": [
"import math\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "0507bb14-a8d9-4c36-b45c-5822d93d8cf3",
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv('26__titanic.csv', sep=\",\")"
]
},
{
"cell_type": "code",
"execution_count": 103,
"id": "b79d0217-cef7-45e1-a2fc-231dd9676399",
"metadata": {},
"outputs": [],
"source": [
"# zdefiniujmy sobie kilka funkcji-helperów\n",
"def format_corr_value(val):\n",
" if val == 1.0:\n",
" return '1'\n",
" v = int(val * 100)\n",
" av = (abs(v) // 10) - 4\n",
" if (av > 0):\n",
" return '%s%s' % (v, '!' * av)\n",
" return str(v)\n",
"\n",
"def format_corr(dt):\n",
" dt2 = dt.copy()\n",
" for c in dt2.columns:\n",
" dt2[c] = dt2[c].apply(format_corr_value)\n",
" return dt2"
]
},
{
"cell_type": "markdown",
"id": "3557423d-a79e-4f8e-86e1-2c14d6a801c7",
"metadata": {},
"source": [
"Kolumny:\n",
"\n",
" pclass - Klasa biletu\n",
" survived - Czy pasażer przeżył katastrofę\n",
" name - Imię i nazwisko pasażera\n",
" sex - Płeć pasażera\n",
" age - Wiek pasażera\n",
" sibsp - Liczba rodzeństwa/małżonków na pokładzie\n",
" parch - Liczba rodziców/dzieci na pokładzie\n",
" ticket - Numer biletu\n",
" fare - Cena biletu\n",
" cabin - Numer kabiny\n",
" embarked - Port, w którym pasażer wszedł na pokład (C = Cherbourg, Q = Queenstown, S = Southampton)\n",
" boat - Numer łodzi ratunkowej\n",
" body - Numer ciała (jeśli pasażer nie przeżył i ciało zostało odnalezione)\n",
" home.dest - Miejsce docelowe\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f8000c02-db74-44b9-b287-abbf71510773",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
pclass
\n",
"
survived
\n",
"
name
\n",
"
sex
\n",
"
age
\n",
"
sibsp
\n",
"
parch
\n",
"
ticket
\n",
"
fare
\n",
"
cabin
\n",
"
embarked
\n",
"
boat
\n",
"
body
\n",
"
home.dest
\n",
"
\n",
" \n",
" \n",
"
\n",
"
135
\n",
"
1.0
\n",
"
0.0
\n",
"
Goldschmidt, Mr. George B
\n",
"
male
\n",
"
71.0
\n",
"
0.0
\n",
"
0.0
\n",
"
PC 17754
\n",
"
34.6542
\n",
"
A5
\n",
"
C
\n",
"
NaN
\n",
"
NaN
\n",
"
New York, NY
\n",
"
\n",
"
\n",
"
258
\n",
"
1.0
\n",
"
1.0
\n",
"
Serepeca, Miss. Augusta
\n",
"
female
\n",
"
30.0
\n",
"
0.0
\n",
"
0.0
\n",
"
113798
\n",
"
31.0000
\n",
"
NaN
\n",
"
C
\n",
"
4
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
196
\n",
"
1.0
\n",
"
1.0
\n",
"
Marechal, Mr. Pierre
\n",
"
male
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
11774
\n",
"
29.7000
\n",
"
C47
\n",
"
C
\n",
"
7
\n",
"
NaN
\n",
"
Paris, France
\n",
"
\n",
"
\n",
"
461
\n",
"
2.0
\n",
"
0.0
\n",
"
Jarvis, Mr. John Denzil
\n",
"
male
\n",
"
47.0
\n",
"
0.0
\n",
"
0.0
\n",
"
237565
\n",
"
15.0000
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
North Evington, England
\n",
"
\n",
"
\n",
"
444
\n",
"
2.0
\n",
"
0.0
\n",
"
Hickman, Mr. Stanley George
\n",
"
male
\n",
"
21.0
\n",
"
2.0
\n",
"
0.0
\n",
"
S.O.C. 14879
\n",
"
73.5000
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
West Hampstead, London / Neepawa, MB
\n",
"
\n",
"
\n",
"
1043
\n",
"
3.0
\n",
"
1.0
\n",
"
Murphy, Miss. Margaret Jane
\n",
"
female
\n",
"
NaN
\n",
"
1.0
\n",
"
0.0
\n",
"
367230
\n",
"
15.5000
\n",
"
NaN
\n",
"
Q
\n",
"
16
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
976
\n",
"
3.0
\n",
"
0.0
\n",
"
Lockyer, Mr. Edward
\n",
"
male
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
1222
\n",
"
7.8792
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
153.0
\n",
"
NaN
\n",
"
\n",
"
\n",
"
955
\n",
"
3.0
\n",
"
0.0
\n",
"
Lefebre, Miss. Ida
\n",
"
female
\n",
"
NaN
\n",
"
3.0
\n",
"
1.0
\n",
"
4133
\n",
"
25.4667
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
1074
\n",
"
3.0
\n",
"
0.0
\n",
"
O'Connor, Mr. Patrick
\n",
"
male
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
366713
\n",
"
7.7500
\n",
"
NaN
\n",
"
Q
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
1015
\n",
"
3.0
\n",
"
0.0
\n",
"
Meo, Mr. Alfonzo
\n",
"
male
\n",
"
55.5
\n",
"
0.0
\n",
"
0.0
\n",
"
A.5. 11206
\n",
"
8.0500
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
201.0
\n",
"
NaN
\n",
"
\n",
"
\n",
"
98
\n",
"
1.0
\n",
"
1.0
\n",
"
Douglas, Mrs. Walter Donald (Mahala Dutton)
\n",
"
female
\n",
"
48.0
\n",
"
1.0
\n",
"
0.0
\n",
"
PC 17761
\n",
"
106.4250
\n",
"
C86
\n",
"
C
\n",
"
2
\n",
"
NaN
\n",
"
Deephaven, MN / Cedar Rapids, IA
\n",
"
\n",
"
\n",
"
235
\n",
"
1.0
\n",
"
1.0
\n",
"
Rheims, Mr. George Alexander Lucien
\n",
"
male
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
PC 17607
\n",
"
39.6000
\n",
"
NaN
\n",
"
S
\n",
"
A
\n",
"
NaN
\n",
"
Paris / New York, NY
\n",
"
\n",
"
\n",
"
1273
\n",
"
3.0
\n",
"
0.0
\n",
"
Vander Planke, Miss. Augusta Maria
\n",
"
female
\n",
"
18.0
\n",
"
2.0
\n",
"
0.0
\n",
"
345764
\n",
"
18.0000
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
746
\n",
"
3.0
\n",
"
1.0
\n",
"
Daly, Mr. Eugene Patrick
\n",
"
male
\n",
"
29.0
\n",
"
0.0
\n",
"
0.0
\n",
"
382651
\n",
"
7.7500
\n",
"
NaN
\n",
"
Q
\n",
"
13 15 B
\n",
"
NaN
\n",
"
Co Athlone, Ireland New York, NY
\n",
"
\n",
"
\n",
"
1081
\n",
"
3.0
\n",
"
1.0
\n",
"
O'Leary, Miss. Hanora \"Norah\"
\n",
"
female
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
330919
\n",
"
7.8292
\n",
"
NaN
\n",
"
Q
\n",
"
13
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" pclass survived name sex \\\n",
"135 1.0 0.0 Goldschmidt, Mr. George B male \n",
"258 1.0 1.0 Serepeca, Miss. Augusta female \n",
"196 1.0 1.0 Marechal, Mr. Pierre male \n",
"461 2.0 0.0 Jarvis, Mr. John Denzil male \n",
"444 2.0 0.0 Hickman, Mr. Stanley George male \n",
"1043 3.0 1.0 Murphy, Miss. Margaret Jane female \n",
"976 3.0 0.0 Lockyer, Mr. Edward male \n",
"955 3.0 0.0 Lefebre, Miss. Ida female \n",
"1074 3.0 0.0 O'Connor, Mr. Patrick male \n",
"1015 3.0 0.0 Meo, Mr. Alfonzo male \n",
"98 1.0 1.0 Douglas, Mrs. Walter Donald (Mahala Dutton) female \n",
"235 1.0 1.0 Rheims, Mr. George Alexander Lucien male \n",
"1273 3.0 0.0 Vander Planke, Miss. Augusta Maria female \n",
"746 3.0 1.0 Daly, Mr. Eugene Patrick male \n",
"1081 3.0 1.0 O'Leary, Miss. Hanora \"Norah\" female \n",
"\n",
" age sibsp parch ticket fare cabin embarked boat \\\n",
"135 71.0 0.0 0.0 PC 17754 34.6542 A5 C NaN \n",
"258 30.0 0.0 0.0 113798 31.0000 NaN C 4 \n",
"196 NaN 0.0 0.0 11774 29.7000 C47 C 7 \n",
"461 47.0 0.0 0.0 237565 15.0000 NaN S NaN \n",
"444 21.0 2.0 0.0 S.O.C. 14879 73.5000 NaN S NaN \n",
"1043 NaN 1.0 0.0 367230 15.5000 NaN Q 16 \n",
"976 NaN 0.0 0.0 1222 7.8792 NaN S NaN \n",
"955 NaN 3.0 1.0 4133 25.4667 NaN S NaN \n",
"1074 NaN 0.0 0.0 366713 7.7500 NaN Q NaN \n",
"1015 55.5 0.0 0.0 A.5. 11206 8.0500 NaN S NaN \n",
"98 48.0 1.0 0.0 PC 17761 106.4250 C86 C 2 \n",
"235 NaN 0.0 0.0 PC 17607 39.6000 NaN S A \n",
"1273 18.0 2.0 0.0 345764 18.0000 NaN S NaN \n",
"746 29.0 0.0 0.0 382651 7.7500 NaN Q 13 15 B \n",
"1081 NaN 0.0 0.0 330919 7.8292 NaN Q 13 \n",
"\n",
" body home.dest \n",
"135 NaN New York, NY \n",
"258 NaN NaN \n",
"196 NaN Paris, France \n",
"461 NaN North Evington, England \n",
"444 NaN West Hampstead, London / Neepawa, MB \n",
"1043 NaN NaN \n",
"976 153.0 NaN \n",
"955 NaN NaN \n",
"1074 NaN NaN \n",
"1015 201.0 NaN \n",
"98 NaN Deephaven, MN / Cedar Rapids, IA \n",
"235 NaN Paris / New York, NY \n",
"1273 NaN NaN \n",
"746 NaN Co Athlone, Ireland New York, NY \n",
"1081 NaN NaN "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# jak zwykle pierwszy rzut oka na dane\n",
"df.sample(15)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "338309f0-095f-4222-9096-0bed009835aa",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" pclass survived name sex age sibsp parch \\\n",
"726 3.0 0.0 Connolly, Miss. Kate female 30.0 0.0 0.0 \n",
"925 3.0 0.0 Kelly, Mr. James male 44.0 0.0 0.0 \n",
"\n",
" ticket fare cabin embarked boat body home.dest \n",
"726 330972 7.6292 NaN Q NaN NaN Ireland \n",
"925 363592 8.0500 NaN S NaN NaN NaN "
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# sprawdzenie, czy nie ma duplikatów po name:\n",
"df[df.duplicated(subset=['name'])]"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "c1b0ae57-a57a-48c5-99c9-3cd70a2673fb",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
pclass
\n",
"
survived
\n",
"
name
\n",
"
sex
\n",
"
age
\n",
"
sibsp
\n",
"
parch
\n",
"
ticket
\n",
"
fare
\n",
"
cabin
\n",
"
embarked
\n",
"
boat
\n",
"
body
\n",
"
home.dest
\n",
"
\n",
" \n",
" \n",
"
\n",
"
725
\n",
"
3.0
\n",
"
1.0
\n",
"
Connolly, Miss. Kate
\n",
"
female
\n",
"
22.0
\n",
"
0.0
\n",
"
0.0
\n",
"
370373
\n",
"
7.7500
\n",
"
NaN
\n",
"
Q
\n",
"
13
\n",
"
NaN
\n",
"
Ireland
\n",
"
\n",
"
\n",
"
726
\n",
"
3.0
\n",
"
0.0
\n",
"
Connolly, Miss. Kate
\n",
"
female
\n",
"
30.0
\n",
"
0.0
\n",
"
0.0
\n",
"
330972
\n",
"
7.6292
\n",
"
NaN
\n",
"
Q
\n",
"
NaN
\n",
"
NaN
\n",
"
Ireland
\n",
"
\n",
"
\n",
"
924
\n",
"
3.0
\n",
"
0.0
\n",
"
Kelly, Mr. James
\n",
"
male
\n",
"
34.5
\n",
"
0.0
\n",
"
0.0
\n",
"
330911
\n",
"
7.8292
\n",
"
NaN
\n",
"
Q
\n",
"
NaN
\n",
"
70.0
\n",
"
NaN
\n",
"
\n",
"
\n",
"
925
\n",
"
3.0
\n",
"
0.0
\n",
"
Kelly, Mr. James
\n",
"
male
\n",
"
44.0
\n",
"
0.0
\n",
"
0.0
\n",
"
363592
\n",
"
8.0500
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" pclass survived name sex age sibsp parch \\\n",
"725 3.0 1.0 Connolly, Miss. Kate female 22.0 0.0 0.0 \n",
"726 3.0 0.0 Connolly, Miss. Kate female 30.0 0.0 0.0 \n",
"924 3.0 0.0 Kelly, Mr. James male 34.5 0.0 0.0 \n",
"925 3.0 0.0 Kelly, Mr. James male 44.0 0.0 0.0 \n",
"\n",
" ticket fare cabin embarked boat body home.dest \n",
"725 370373 7.7500 NaN Q 13 NaN Ireland \n",
"726 330972 7.6292 NaN Q NaN NaN Ireland \n",
"924 330911 7.8292 NaN Q NaN 70.0 NaN \n",
"925 363592 8.0500 NaN S NaN NaN NaN "
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# więc sprawdzmy te nazwiska\n",
"df[df['name'].isin(['Connolly, Miss. Kate', 'Kelly, Mr. James'])]"
]
},
{
"cell_type": "code",
"execution_count": 74,
"id": "e4d5aa71-db61-4d92-af50-19c9e507fdd1",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
klasa_biletu
\n",
"
ocalal
\n",
"
plec
\n",
"
wiek
\n",
"
l_rdz_młż
\n",
"
l_dzieci_rodz
\n",
"
oplata
\n",
"
kabina
\n",
"
lodz
\n",
"
mial_lodke
\n",
"
mial_kabine
\n",
"
\n",
" \n",
" \n",
"
\n",
"
1252
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
44.0
\n",
"
0.0
\n",
"
0.0
\n",
"
8.0500
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
389
\n",
"
2.0
\n",
"
0.0
\n",
"
M
\n",
"
32.0
\n",
"
0.0
\n",
"
0.0
\n",
"
13.0000
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
638
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
35.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.0500
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
722
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
24.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.4958
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
649
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
23.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.0500
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
804
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
7.7500
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
301
\n",
"
1.0
\n",
"
0.0
\n",
"
M
\n",
"
47.0
\n",
"
0.0
\n",
"
0.0
\n",
"
34.0208
\n",
"
D46
\n",
"
NaN
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
95
\n",
"
1.0
\n",
"
1.0
\n",
"
K
\n",
"
54.0
\n",
"
1.0
\n",
"
1.0
\n",
"
81.8583
\n",
"
A34
\n",
"
5
\n",
"
1
\n",
"
1
\n",
"
\n",
"
\n",
"
206
\n",
"
1.0
\n",
"
0.0
\n",
"
M
\n",
"
44.0
\n",
"
2.0
\n",
"
0.0
\n",
"
90.0000
\n",
"
C78
\n",
"
NaN
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
433
\n",
"
2.0
\n",
"
0.0
\n",
"
M
\n",
"
30.0
\n",
"
0.0
\n",
"
0.0
\n",
"
10.5000
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
402
\n",
"
2.0
\n",
"
1.0
\n",
"
K
\n",
"
30.0
\n",
"
1.0
\n",
"
0.0
\n",
"
13.8583
\n",
"
NaN
\n",
"
12
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
849
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
26.0
\n",
"
1.0
\n",
"
0.0
\n",
"
7.8542
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1030
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
8.4583
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1155
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
7.7750
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
697
\n",
"
3.0
\n",
"
0.0
\n",
"
K
\n",
"
30.0
\n",
"
0.0
\n",
"
0.0
\n",
"
8.6625
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" klasa_biletu ocalal plec wiek l_rdz_młż l_dzieci_rodz oplata \\\n",
"1252 3.0 0.0 M 44.0 0.0 0.0 8.0500 \n",
"389 2.0 0.0 M 32.0 0.0 0.0 13.0000 \n",
"638 3.0 0.0 M 35.0 0.0 0.0 7.0500 \n",
"722 3.0 0.0 M 24.0 0.0 0.0 7.4958 \n",
"649 3.0 0.0 M 23.0 0.0 0.0 7.0500 \n",
"804 3.0 0.0 M NaN 0.0 0.0 7.7500 \n",
"301 1.0 0.0 M 47.0 0.0 0.0 34.0208 \n",
"95 1.0 1.0 K 54.0 1.0 1.0 81.8583 \n",
"206 1.0 0.0 M 44.0 2.0 0.0 90.0000 \n",
"433 2.0 0.0 M 30.0 0.0 0.0 10.5000 \n",
"402 2.0 1.0 K 30.0 1.0 0.0 13.8583 \n",
"849 3.0 0.0 M 26.0 1.0 0.0 7.8542 \n",
"1030 3.0 0.0 M NaN 0.0 0.0 8.4583 \n",
"1155 3.0 0.0 M NaN 0.0 0.0 7.7750 \n",
"697 3.0 0.0 K 30.0 0.0 0.0 8.6625 \n",
"\n",
" kabina lodz mial_lodke mial_kabine \n",
"1252 NaN NaN 0 0 \n",
"389 NaN NaN 0 0 \n",
"638 NaN NaN 0 0 \n",
"722 NaN NaN 0 0 \n",
"649 NaN NaN 0 0 \n",
"804 NaN NaN 0 0 \n",
"301 D46 NaN 0 1 \n",
"95 A34 5 1 1 \n",
"206 C78 NaN 0 1 \n",
"433 NaN NaN 0 0 \n",
"402 NaN 12 1 0 \n",
"849 NaN NaN 0 0 \n",
"1030 NaN NaN 0 0 \n",
"1155 NaN NaN 0 0 \n",
"697 NaN NaN 0 0 "
]
},
"execution_count": 74,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# czyli widzimy, że to raczej zbieżność nazwisk\n",
"\n",
"# Teraz tworzymy nową strukturę danych bardziej przejrzystą do obróbki. Nie mam ochoty analizować takich\n",
"# danych jak: home.dest, body, embarked, ticket, name - a w zasadzie to nawet boat i cabin zamienię na \n",
"# wartość bool mial_lodke i mial_kabine. Łódką będę się zajmował później, bo jest coś ciekawego z łódką 'A'.\n",
"df2 = df.copy()\n",
"df2 = df2[[c for c in df.columns if c not in ['name', 'ticket', 'home.dest', 'body', 'embarked']]]\n",
"df2.columns = ['klasa_biletu', 'ocalal', 'plec', 'wiek', 'l_rdz_młż', 'l_dzieci_rodz', 'oplata', 'kabina', 'lodz']\n",
"df2['plec'] = df2['plec'].apply(lambda x: ({'female': 'K', 'male': 'M'}.get(x, x)))\n",
"df2['mial_lodke'] = df2['lodz'].notnull().astype(int)\n",
"df2['mial_kabine'] = df2['kabina'].notnull().astype(int)\n",
"df2.drop(\n",
"df2.sample(15)\n"
]
},
{
"cell_type": "code",
"execution_count": 63,
"id": "6b8f3e69-68e4-42c6-8edf-63a93811c425",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
klasa_biletu
\n",
"
ocalal
\n",
"
plec
\n",
"
wiek
\n",
"
l_rdz_młż
\n",
"
l_dzieci_rodz
\n",
"
oplata
\n",
"
kabina
\n",
"
port
\n",
"
lodz
\n",
"
cialo
\n",
"
dest
\n",
"
mial_lodke
\n",
"
mial_kabine
\n",
"
\n",
" \n",
" \n",
"
\n",
"
7
\n",
"
1.0
\n",
"
0.0
\n",
"
M
\n",
"
39.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
A36
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Belfast, NI
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
70
\n",
"
1.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Liverpool, England / Belfast
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
125
\n",
"
1.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
B102
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
150
\n",
"
1.0
\n",
"
0.0
\n",
"
M
\n",
"
40.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
B94
\n",
"
S
\n",
"
NaN
\n",
"
110.0
\n",
"
NaN
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
170
\n",
"
1.0
\n",
"
1.0
\n",
"
M
\n",
"
49.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
B52 B54 B56
\n",
"
S
\n",
"
C
\n",
"
NaN
\n",
"
Liverpool
\n",
"
1
\n",
"
1
\n",
"
\n",
"
\n",
"
223
\n",
"
1.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Belfast
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
234
\n",
"
1.0
\n",
"
0.0
\n",
"
M
\n",
"
38.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Rotterdam, Netherlands
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
363
\n",
"
2.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Belfast
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
384
\n",
"
2.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Belfast
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
410
\n",
"
2.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Belfast
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
473
\n",
"
2.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Belfast
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
528
\n",
"
2.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Belfast
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
581
\n",
"
2.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Belfast
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
896
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
49.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
898
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
19.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
963
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
36.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1254
\n",
"
3.0
\n",
"
1.0
\n",
"
M
\n",
"
25.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
S
\n",
"
15
\n",
"
NaN
\n",
"
NaN
\n",
"
1
\n",
"
0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" klasa_biletu ocalal plec wiek l_rdz_młż l_dzieci_rodz oplata \\\n",
"7 1.0 0.0 M 39.0 0.0 0.0 0.0 \n",
"70 1.0 0.0 M NaN 0.0 0.0 0.0 \n",
"125 1.0 0.0 M NaN 0.0 0.0 0.0 \n",
"150 1.0 0.0 M 40.0 0.0 0.0 0.0 \n",
"170 1.0 1.0 M 49.0 0.0 0.0 0.0 \n",
"223 1.0 0.0 M NaN 0.0 0.0 0.0 \n",
"234 1.0 0.0 M 38.0 0.0 0.0 0.0 \n",
"363 2.0 0.0 M NaN 0.0 0.0 0.0 \n",
"384 2.0 0.0 M NaN 0.0 0.0 0.0 \n",
"410 2.0 0.0 M NaN 0.0 0.0 0.0 \n",
"473 2.0 0.0 M NaN 0.0 0.0 0.0 \n",
"528 2.0 0.0 M NaN 0.0 0.0 0.0 \n",
"581 2.0 0.0 M NaN 0.0 0.0 0.0 \n",
"896 3.0 0.0 M 49.0 0.0 0.0 0.0 \n",
"898 3.0 0.0 M 19.0 0.0 0.0 0.0 \n",
"963 3.0 0.0 M 36.0 0.0 0.0 0.0 \n",
"1254 3.0 1.0 M 25.0 0.0 0.0 0.0 \n",
"\n",
" kabina port lodz cialo dest mial_lodke \\\n",
"7 A36 S NaN NaN Belfast, NI 0 \n",
"70 NaN S NaN NaN Liverpool, England / Belfast 0 \n",
"125 B102 S NaN NaN NaN 0 \n",
"150 B94 S NaN 110.0 NaN 0 \n",
"170 B52 B54 B56 S C NaN Liverpool 1 \n",
"223 NaN S NaN NaN Belfast 0 \n",
"234 NaN S NaN NaN Rotterdam, Netherlands 0 \n",
"363 NaN S NaN NaN Belfast 0 \n",
"384 NaN S NaN NaN Belfast 0 \n",
"410 NaN S NaN NaN Belfast 0 \n",
"473 NaN S NaN NaN Belfast 0 \n",
"528 NaN S NaN NaN Belfast 0 \n",
"581 NaN S NaN NaN Belfast 0 \n",
"896 NaN S NaN NaN NaN 0 \n",
"898 NaN S NaN NaN NaN 0 \n",
"963 NaN S NaN NaN NaN 0 \n",
"1254 NaN S 15 NaN NaN 1 \n",
"\n",
" mial_kabine \n",
"7 1 \n",
"70 0 \n",
"125 1 \n",
"150 1 \n",
"170 1 \n",
"223 0 \n",
"234 0 \n",
"363 0 \n",
"384 0 \n",
"410 0 \n",
"473 0 \n",
"528 0 \n",
"581 0 \n",
"896 0 \n",
"898 0 \n",
"963 0 \n",
"1254 0 "
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# analiza podejrzanych danych\n",
"# 1. Dlaczego mamy dane z zerową opłatą (fare[min] == 0)?\n",
"df2[df2['oplata'] == 0]"
]
},
{
"cell_type": "code",
"execution_count": 75,
"id": "9dbb68c5-a311-4762-aaa3-ca54f438ec9d",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
klasa_biletu
\n",
"
ocalal
\n",
"
plec
\n",
"
wiek
\n",
"
l_rdz_młż
\n",
"
l_dzieci_rodz
\n",
"
oplata
\n",
"
kabina
\n",
"
lodz
\n",
"
mial_lodke
\n",
"
mial_kabine
\n",
"
\n",
" \n",
" \n",
"
\n",
"
794
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
5.0
\n",
"
0.0
\n",
"
0.0
\n",
"
12.4750
\n",
"
NaN
\n",
"
13
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
855
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
11.0
\n",
"
0.0
\n",
"
0.0
\n",
"
18.7875
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
582
\n",
"
2.0
\n",
"
1.0
\n",
"
K
\n",
"
12.0
\n",
"
0.0
\n",
"
0.0
\n",
"
15.7500
\n",
"
NaN
\n",
"
9
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
1056
\n",
"
3.0
\n",
"
1.0
\n",
"
M
\n",
"
12.0
\n",
"
1.0
\n",
"
0.0
\n",
"
11.2417
\n",
"
NaN
\n",
"
C
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
653
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
13.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.2292
\n",
"
NaN
\n",
"
C
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
513
\n",
"
2.0
\n",
"
1.0
\n",
"
K
\n",
"
14.0
\n",
"
1.0
\n",
"
0.0
\n",
"
30.0708
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
569
\n",
"
2.0
\n",
"
0.0
\n",
"
M
\n",
"
14.0
\n",
"
0.0
\n",
"
0.0
\n",
"
65.0000
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1057
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
14.0
\n",
"
1.0
\n",
"
0.0
\n",
"
11.2417
\n",
"
NaN
\n",
"
C
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
1236
\n",
"
3.0
\n",
"
1.0
\n",
"
M
\n",
"
14.0
\n",
"
0.0
\n",
"
0.0
\n",
"
9.2250
\n",
"
NaN
\n",
"
13
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
1279
\n",
"
3.0
\n",
"
0.0
\n",
"
K
\n",
"
14.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.8542
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1304
\n",
"
3.0
\n",
"
0.0
\n",
"
K
\n",
"
14.5
\n",
"
1.0
\n",
"
0.0
\n",
"
14.4542
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1007
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
15.0
\n",
"
0.0
\n",
"
0.0
\n",
"
8.0292
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1047
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
15.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.2250
\n",
"
NaN
\n",
"
C
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
1300
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
15.0
\n",
"
1.0
\n",
"
0.0
\n",
"
14.4542
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" klasa_biletu ocalal plec wiek l_rdz_młż l_dzieci_rodz oplata \\\n",
"794 3.0 1.0 K 5.0 0.0 0.0 12.4750 \n",
"855 3.0 0.0 M 11.0 0.0 0.0 18.7875 \n",
"582 2.0 1.0 K 12.0 0.0 0.0 15.7500 \n",
"1056 3.0 1.0 M 12.0 1.0 0.0 11.2417 \n",
"653 3.0 1.0 K 13.0 0.0 0.0 7.2292 \n",
"513 2.0 1.0 K 14.0 1.0 0.0 30.0708 \n",
"569 2.0 0.0 M 14.0 0.0 0.0 65.0000 \n",
"1057 3.0 1.0 K 14.0 1.0 0.0 11.2417 \n",
"1236 3.0 1.0 M 14.0 0.0 0.0 9.2250 \n",
"1279 3.0 0.0 K 14.0 0.0 0.0 7.8542 \n",
"1304 3.0 0.0 K 14.5 1.0 0.0 14.4542 \n",
"1007 3.0 1.0 K 15.0 0.0 0.0 8.0292 \n",
"1047 3.0 1.0 K 15.0 0.0 0.0 7.2250 \n",
"1300 3.0 1.0 K 15.0 1.0 0.0 14.4542 \n",
"\n",
" kabina lodz mial_lodke mial_kabine \n",
"794 NaN 13 1 0 \n",
"855 NaN NaN 0 0 \n",
"582 NaN 9 1 0 \n",
"1056 NaN C 1 0 \n",
"653 NaN C 1 0 \n",
"513 NaN NaN 0 0 \n",
"569 NaN NaN 0 0 \n",
"1057 NaN C 1 0 \n",
"1236 NaN 13 1 0 \n",
"1279 NaN NaN 0 0 \n",
"1304 NaN NaN 0 0 \n",
"1007 NaN NaN 0 0 \n",
"1047 NaN C 1 0 \n",
"1300 NaN NaN 0 0 "
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# OK, widzimy, że to raczej wygląda na załogę, co jest dziwne - nie było tam kobiet[???] Żadne kelnerki,\n",
"# sprzątaczki, muzycy? \n",
"# One płaciły za bilety, albo nie były uwzględnione tutaj? DZIWNE!!!!\n",
"# dalej - co z wiekiem - min jest ok. 0... Ale OK, mogą być przecież z rodzicami - więc sprawdźmy tych,\n",
"# co rodziców nie mieli...\n",
"df2[(df2['l_dzieci_rodz'] == 0) & (df2['wiek'] < 16)].sort_values(by=\"wiek\", ascending=True).head(25)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ee4e6284-1bc9-420e-9ed9-373e4f1c8509",
"metadata": {},
"outputs": [],
"source": [
"# Skandal na pokładzie były dzieci bez rodziców - a nawet jedno miało 5 lat!"
]
},
{
"cell_type": "code",
"execution_count": 100,
"id": "092aaf20-1735-4317-8e68-119c521a4b60",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"liczba wszystkich uczestników: 1309\n",
"W tym wyprawę przeżyło: 500\n",
"\n",
"\n",
" liczba wszystkich liczba ocalałych\n",
"plec \n",
"Kobiety 466 339.0\n",
"Mężczyźni 843 161.0\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAD1CAYAAABtEJ6UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXI0lEQVR4nO3deXhM5/vH8fdksssiEZGQEBG7UPuulhalpUWtrb3VqlLLt6UttVSpFtVaa2+L2pXW2liq9p2WEEusIRKCRPaZ3x/zM5pSMpGZZ2Zyv65rLjEzZ85HcHKf59zneTR6vV6PEEIIIYQCDqoDCCGEECLvkkJECCGEEMpIISKEEEIIZaQQEUIIIYQyUogIIYQQQhkpRIQQQgihjBQiQgghhFBGChEhhBBCKCOFiBBCCCGUkUJECCGEEMpIISKEEEIIZaQQEUIIIYQyUogIIYQQQhkpRIQQQgihjBQiQgghhFBGChEhhBBCKCOFiBBCCCGUkUJECCGEEMpIISKEEEIIZaQQEUIIIYQyUogIIYQQQhkpRIQQQgihjBQiQgghhFBGChEhhBBCKCOFiBBCCCGUkUJECCGEEMpIISJENoWEhPDNN9888T0ajYY1a9ZYJI8QQtgDKUREntG9e3deffXVLM+tWLECV1dXJkyYkCv7iImJ4aWXXnqmTEIIkZc4qg4ghCpz5szhvffeY9q0afTu3TtXPjMgICBXPkcIIfIKGRERedKECRPo168fixcvNhYhK1eupHz58ri4uBASEsLEiRMf2e7evXt07twZDw8PChcuzHfffZfl9X9fmrl69SodOnTAx8eHAgUK0Lp1a6KjowEYOXIkCxcu5JdffkGj0aDRaNi+fTuNGzemX79+WT43Pj4eFxcXtm7dmrvfCCGEUEwKEZHnDB06lDFjxvDrr7/Stm1bAA4dOkT79u3p2LEjJ06cYOTIkQwfPpwFCxZk2farr76iYsWKHD58mGHDhjFw4EC2bNny2P3cv3+fRo0a4eHhwR9//MGff/6Jh4cHzZs3Jy0tjSFDhtC+fXuaN29OTEwMMTEx1KlTh969e7N48WJSU1ONn7Vo0SIKFy5Mo0aNzPZ9EUIIFTR6vV6vOoRQKy1DR8ydZK7eTubanRRu3E3h5r1Ubiamci8lg5S0TFIyMkn+/19T0nXo9XqctQ64OmlxdnTAxUmLq6MD+VwcKejhQiFvVwp5uRDg5UohL1cCvF3x83BR+ufs3r07S5YsIS0tjYiICBo3bmx8rUuXLty8eZPNmzcbn/vwww/57bff+PvvvwFDs2rZsmXZsGGD8T0dO3bk7t27rF+/HjCMiKxevZpXX32VefPmMWHCBE6dOoVGowEgLS2N/Pnzs2bNGpo2bUr37t1JSEjIMoqSmppK4cKFmTFjBu3btwegcuXKvPrqq3z22Wdm+/6Ih0JCQvjggw/44IMP/vM9//y7zqsSUzO4cDOJG3dTiL2X+v/HDcPx43ZSOklpGaSkG44ZGTodmTo9ej24ODrg5qw1PJy0uDpp8XR1xN/TcLwI9H74a4C3K65OWtV/VGFG0iOSx1y5fZ/ImHtEXr/Lqev3iIy5S3T8fTJ15q9H87s7UaqQJ2UCPCkd4EnpQoZfPV2dzL7vBypWrEhcXBwjRoygevXqeHp6AnDq1Clat26d5b1169blm2++ITMzE63WcCCsXbt2lvfUrl37P++kOXToEGfPnjXu44GUlBTOnTv3nxldXFx44403mDdvHu3bt+fo0aMcO3ZM7sYxweMKvBUrVvDGG28wevRoPvzww2feR0xMDD4+Ps+UyVakpGdy/Modzty4x9nYROPj+t0Us+/bQQPFCuSjdCFPSgU8PH6EFMiH1kFj9v0L85NCxI7pdHr+vnaXPefj2Hv+Fgejb3E3JUNZnoT76ey/cIv9F25leT7M34OaxX2pFVqAmqG++Hu6mi1DkSJFWLlyJY0aNaJ58+Zs3LgRT09P9Hq9cdTigewOFv57uwd0Oh1Vq1Zl0aJFj7xWsGDBJ35m7969ee6557hy5Qrz5s2jSZMmFCtWLFt5xKOkMdk0sfdSOBR9m4MXDY+T1+6Qnqlm8FynhwtxSVyIS2Lj39eNz+dz1lKlmI/huFHcl4pB+XF2lG4DWySFiJ2Jjkvi91M32Hs+nn0XbnFPYeGRXQ/OrhbtuwRAqF8+aoYWoGHpgjxfqmCuD8sWLVqUHTt20KhRI5o2bcqmTZsoV64cf/75Z5b37d69m1KlShlHQwD27t2b5T179+6lTJkyj91PlSpVWLp0Kf7+/nh5eT32Pc7OzmRmZj7yfHh4ONWqVWP27NksXrz4kaZYkX0TJkxgxIgRLF682NgTtHLlSkaMGMHZs2cJDAzk/fffZ/DgwVm2e9CYvHbtWry8vBg2bBjvv/++8fV/X5q5evUqgwYNYvPmzTg4OFCvXj2mTJlCSEiIsTH5wXYA27ZtY/To0ZQrV46pU6caPzc+Pp7ChQuzYcOGLJcPzSkjU8eB6NtEnLrB1shYzsclWWS/zyIpLZOdUXHsjIoDwNXJgcrBPtQv5UfTcgGE+XsoTiiySwoRO3A2NpENJ2JY/9d1TsXcVR3nmZ2PS+J8XBJL9l/C3VlLw9IFaVY+gCZlC+Hhkjv/ZIOCgti+fbuxGPnyyy9p3LgxY8aMoUOHDuzZs4epU6cyffr0LNvt2rWLCRMm8Oqrr7JlyxaWL1/Ob7/99th9dOnSha+++orWrVszevRogoKCuHTpEqtWreJ///sfQUFBhISEsGnTJk6fPk2BAgXw9vbGyclwqap3797069cPd3d3XnvttVz5c+c1Q4cOZdq0afz666+88MILwMPG5JEjR9KhQwd2795N3759KVCgAN27dzdu+9VXX/Hxxx8zcuRINm3axMCBAylTpgwvvvjiI/t50Jhcv359/vjjDxwdHfn8889p3rw5x48fZ8iQIZw6dYq7d+8yf/58AHx9fY1/xxMnTsTFxdBDZanG5MTUDLZGxhJx6gbbT9/kTnK6WfdnbinpOvacj2fP+XgmbDxNiYL5aFY+gKblA6gU5P2fI5dCPWlWtVGXb91nxaErrD8RQ1Rsouo4FuHs6ED9MD9eq1KEZuUDcNKaNgz7uGv0MTExNGrUCC8vLz766CNGjBhBVFSU8Sx5yJAhxveGhITQs2dP/v77b3799Vc8PT0ZNmwYAwYMML7n32fJ169f56OPPmL9+vXcu3ePIkWK0KRJE77++mu8vLy4efMmXbp0Yc+ePSQmJrJt2zYaNmwIQGJiIoUKFaJ79+5MmzYtx9+3vEgakx9Pr9ez+1w8Kw5dYeNf10lOf3Q0zh4FervS+rkidKweTIhfPtVxxL/IiIgNydTp2RoZy6J9F/njzE0s0F9qVdIydERExhIRGYufhzPtqgbTuUZRihZwz9b2/74VFyAwMJDIyEjj7x8M3T/Og/k/nuTfdX1AQIBxSP5xChYsmOUH4j/dvn2blJQUevXq9dT9ikdJY/JDF+OTWHHoCqsOX+VqQnKufrYtiLmTwswd55j1xzlqhPjSsUYwL1UIlLtxrIQUIjYg9m4KS/ZfZumBS1y7Y/4udVsQl5hmPLDUC/OjS82ivFguwC666NPT04mJiWHo0KHUqlWLKlWqqI5kk6QxGfadj2f2zvNERMYiY9+g18O+C7fYd+EWI9eepE2VIvSuH0qR/G6qo+VpUohYscu37jN9+1lWHrpKWqZOdRyrpNdjbFgrVsCdtxuE0q5qEC6Otnums2vXLho1akSpUqVYsWKF6jg2LS82Jmfq9Gz86zrf7zzPscsJz/RZ9uxOcjrzd0Xz456LtKpUmHcalqBUIc+nbyhyndzrZIWi45IYsvwYjb7ezpL9l6UIyaaL8ff5ZPVf1P9yG3P/vECKjV7/btiwIXq9ntOnTxMeHq46js170JgcHx9P06ZNefvtt4mIiGDMmDGcOXOGhQsXMnXq1Cz9QPCwMfnMmTNMmzaN5cuXZ+kH+qcuXbrg5+dH69at2blzJxcuXGDHjh0MGDCAK1euAIa+k+PHj3P69Gni4uJIT3/YHNq7d2/Gjx9PZmZmjhuTM3V6ft5/iUZfb+e9xYelCMmmDJ2eVUeu0uybP+i98ACHLt5WHSnPkWZVK3IhLokpv59h3fEYi0wwZu8KerrwXsMSdKlVzOTGVmHb8lpj8oYTMXy1+TTnb1r/bbe2oGHpggx9qQxlAh4/uiVylxQiVuBeSjrfRkSxYHe0skmD7FlowXwMb1mORmX8VUcR4rEuX75MSEgIBw4cMKknaM+5eL7cGMlRGf3IdQ4aeK1yEB82L00hL/NNsiikEFFKp9Oz/NBlvtp0hrjE1KdvIJ5Jw9IF+bRlOZnoSFiNfzYmX7x4kV27dmVru0vx9xm17m8iImPNnFC4O2vp06AEfZ4PlbtszEQKEUUOXTR0bZ+4ekd1lDzFSavhzVohDHyxpEXXuBHicR5MqvegMflpPUFpGTpm7jjH9O1nSUmX3jFLCingzhdtwqlTwk91FLsjhYiFpaRnMn5DJAv3RMvtdAoVye/Gl20rUq+kHFSEbTh08RYfrTzB2TwygaE10migQ7VghrUoi7ebnMjkFilELOjQxdv8b/kxm1jHIa/oUrMoH7coS75cmjpeiNwmJy/Wx9/ThdGtK9C8gv0ufGhJUohYQGpGJpO3RDF753m5G8YKBfu6MaFtJWqXKKA6ihBZnL5+j/5LjnD6xj3VUcRjvPpcYca+Fi4nMs9IChEzi7pxj36L5UBi7TQaeLtBKB82K2MXs7MK2/fjnmg+/+0UqRnSC2LNQv3yMbVzFcoVllt9c0oKETNac+QqH68+wf0025xYKy+qHVqA7zpXxs/DRXUUkUfdTkrjw5XH2XLyhuooIptcHB34tGVZ3qwdojqKTZJCxBwyM7i6fS51twSpTiJyIMDLlWldqlC1mI/qKCKPibx+l14LDubJhensQYvwACa0q4SHXKoxiRQiue3+LVjWFaJ3sjW4Hz2j6qhOJHLASavh05bl6FYnRHUUkUdsOXmDD34+QpKMoNq0MgGezOtencKykF62SSGSm26chCUdIeEiAHqNlrEFvmDOlWDFwUROdaoRzOevhkvfiDCradvOMnHzaaSX3T4U9HRhbrdqVAzKrzqKTZBCJLdE/gar3oa0rPf469z8aJP5BUfvymyetuqFsoWY2rmyzKoocl1qRiZDV55g9ZGrqqOIXObmpGVyh0o0rxCoOorVk0IkNxxdAr/0Bf3ju9uTCj5HjZjBJGXIDzJbVbWYD3O7VSO/u7PqKMJOJKdl8vaPB9kZFac6ijATjQaGvVSGtxuUUB3FqsmSpM/q+LInFiEA+W4eZU3xXywYSuS2Qxdv8/rMPVyTJkKRC+6mpPPm3H1ShNg5vR6+WB/J5C1nVEexalKIPIsTK2D1O08sQh4oeXkFE0ocs0AoYS5RsYm0mb6baJkZVzyDW0lpdJ69l4MXb6uOIixkSkQUEzZGqo5htaQQyam/Vxt6QvTZ73B//cYU2hSS1TJt2fW7KXSevZfLt+6rjiJsUOzdFDrM2sNfV++qjiIsbPr2c3z+60nVMaySFCI5cXItrOxtUhECoMlIYYLuK0LdU8wUTFjCtTspdJmzj5g7cplGZN/tpDQ6z9lHlCxal2fN+fMCn/3yl+oYVkcKEVNF/gYreoIuI0ebO967ykr/uTg5SI+wLbt06z5dZu8j9p4UleLpklIz6L7ggKycK1i45yJfbzqtOoZVkULEFKc3wvLuoEt/po/xub6LpWFbcieTUOZ8XBJdZu/jVlKa6ijCiqVl6Ojz4yGOXU5QHUVYianbzvLjnmjVMayGFCLZFbXFMGNqZu780KlyaQEfFYvKlc8S6kTFJvLWDwdJzZDZMMWjdDo9A34+wp9n5e4YkdVna/9mw4kY1TGsghQi2RFzHJa+AZmpufqx79z+iucLSOe8rTt08TZDV55QHUNYoZHr/mbDX9dVxxBWSKeHAUuPsu98vOooykkh8jQpdwwjIRm53wugSUtktvM3FHR+tks9Qr3VR64ydauMcImHft5/iR/2XFQdQ1ixtAwdb/1wMM9PCZCjmVUjIiKIiIggNjYWnS7rHBrz5s3LtXBW4ecuEPmrWXcRU6QZtc91M+s+hPlpNDCtcxVahMuUznndoYu36fT9XtIynz7HkBBlAjxZ3bcubs55c/Ztk0dERo0aRdOmTYmIiCAuLo7bt29nediV3VPNXoQABF7dxLySu82+H2Feej0MXnaMv67eUR1FKHTjbgrv/nRIihCRbZHX7/HRyuOqYyhj8ohIYGAgEyZM4M033zRXJutwaS8saJnj23RNJSv12o+QAu782r8+Hi6OqqMIC0vNyKTDrL0clTtkRA6MeLkcPesVVx3D4kweEUlLS6NOnTrmyGI9kuJgeQ+LFSEAGn0mHyd9xXNeMs+ArYuOv8/wNTJpUV40bn2kFCEix75Yf4r9F26pjmFxJo+IfPTRR3h4eDB8+HBzZVJLp4Of2sD5bUp2Lyv12o+Jr1eibdUg1TGsSkJCAvv3739sf1nXrl0Vpcodf5y5Sbf5+5H1zMWzCPR2ZeMHDfB2c1IdxWKyVYgMGjTI+LVOp2PhwoVUrFiRihUr4uSU9Zs1adKk3E9pSdvGwY7xSiNEBbfjxag2SjOIZ5fPWcuv/etT3C+f6ihWYd26dXTp0oWkpCQ8PT3RaDTG1zQaDbdu2e6Z4O2kNJp98wex93L3Fn+RN7WpXIRJHZ5THcNislWINGrUKHsfptGwdevWZw6lzNkIWNQuW6vpmtuyIh/x4blKqmOIZxRexJtVfevgpJU75UuVKkWLFi344osvcHd3Vx0nV7370yGZL0TkqplvVKV5hQDVMSwiR7fv2qWUuzC1GiTeUJ0EAL2jK4PzjWfVDX/VUcQzGvRiKfo3Kak6hnL58uXjxIkThIaGqo6Sq5YfvMz/VuTdOx6EeRTI58ymgQ3w83BRHcXsTD5Nu3PnzmOHUG/dusXduza8tPUfE6ymCAFZqdeeTN12VhY7A5o1a8bBgwdVx8hVcYmpjJGl3YUZxCel8fGqvDFjs8kjIi+99BKvvPIKffv2zfL8zJkzWbt2LevXr8/VgBYRdxam13rmxezM4XZAXWpc6ku6TvP0NwurVT3Eh2V9amfpi8gL1q5da/z65s2bjB49mh49ehAeHv5If1mrVq0sHe+ZDVp6lFVHrqqOIezYzDeq0LyCfU+SaHIh4uvry65duyhbtmyW5yMjI6lbty7x8TY4b/6i9hC1SXWK/3S4aHfanGmqOoZ4RhPaVaR9tbw1T4yDQ/YGXTUaDZmZtrVw4L7z8XT4fq/qGMLOFfZ2JWJwQ7ueddXkSzOpqalkZDw6v0Z6ejrJycm5EsqiorZYdRECslKvvRi/IZKE+7mzerOt0Ol02XrYWhGSkalj+C8yV4wwv2t3UvjOztexMrkQqV69Ot9///0jz8+cOZOqVavmSiiLyUyHjcNUp8gWWanX9t1KSuOb3+37gJJXzNt1gTM3pO9HWMacPy9wKf6+6hhmY/KlmV27dvHCCy9QvXp1mjRpAhgWwTtw4ACbN2+mfv36ZglqFrunwuZPVKfItjSfktSN/5SbaXlnoht746x1IGLw8wT72tftq9nRv39/wsLC6N+/f5bnp06dytmzZ/nmm2/UBDPRraQ0GkzYRmKq5WZeFqJ5+QBmvmljJ/vZZPKISN26ddmzZw/BwcEsW7aMdevWERYWxvHjx22rCEm8CTsmqE5hEufbUawNXqw6hngGaZk6Jm85ozqGEitXrqRu3bqPPF+nTh1WrFihIFHOTN16VooQYXEb/77OoYv2OSqed+cRWfs+HP5BdYoc2Rrcj55Rdr7ejx1z0MCGAQ0oHeCpOopFubq68tdffxEWFpbl+bNnz1KhQgVSUqz/VvWrCck0+no7aRnqJz0UeU/9kn782Kum6hi5LlsjIv+cH+Tu3btPfNiEa0fhyE+qU+RYoysz6B10WXUMkUM6PXy1KVJ1DIsLCwtj48aNjzy/YcMGm5nk7LuIKClChDI7o+I4dNF2l0L4L9lap9zHx4eYmBj8/f3Jnz//Y+dC0Ov1tnML3vZxVjGNe049WKn3oNcXHL3roTqOyIHfT8Vy6OItqhbzVR3FYgYNGkS/fv24efMmjRs3Bgz9ZRMnTrSJ/pDLt+6z4tAV1TFEHjd5SxQ/9bavUZFsFSJbt27F19fX+LVNT8oUFwVnrPt23exwSI5jUcHp1LgvK/XaqhnbzzOnW94pRHr27Elqaipjx45lzJgxAISEhDBjxgybWHl3+vazZOjy5pVsYT3+PBvHwehbVAuxn2OHyT0iaWlpODs7P/a1uLg4/Pz8ciWY2az7AA7NV50i18hKvbbLQQMRgxvmydV5b968iZubGx4etjGidyspjdrjIkiVyzLCCthbr4jJd820b98ene7R/4w3btygYcOGuZHJfJLi4djPqlPkqpKXVzChxDHVMUQO6PQw788LqmNYzMiRI7l48SIABQsWtJkiBGDR3otShAirsTMqzq7WrzK5EImJiaFXr16PPNewYUPKlCmTa8HM4uBcyLDB2V+f4vUbU2hTKFZ1DJEDKw5dyTOzra5bt44SJUrQpEkTFi9ebBN3yQCkZ+r4ce9F1TGEyOKHPdGqI+QakwuR9evXs3//fgYOHAjA1atXadiwIeHh4SxbtizXA+aazAw4MFd1CrOQlXptV3J6Jov2XVIdwyIOHTrE4cOHqVixIgMHDiQwMJB3332XAwcOqI72RL8ev0bsvVTVMYTIYtXhq3Yzn43JhUiBAgXYtGkTq1evZuDAgTRq1IjKlSuzZMmSbC9wpcSZDZB4XXUKs3G8d5WV/nNxcpBmOlvzw55oMvNIE2TFihWZPHkyV69eZd68eVy9epW6desSHh7OlClTuHPnjuqIj5i/K1p1BCEekZiawUo7uYsrR5VDUFAQW7ZsYfHixdSoUYMlS5ag1Vr5nRuHFqhOYHY+13exNGyL6hjCRDfuprIz6qbqGBal0+lIS0sjNTUVvV6Pr68vM2bMIDg4mKVLl6qOZ/T3tTscv2J9xZEQYD+XZ7JViPj4+ODr65vlUbNmTe7cucO6desoUKCA8XmrlHAJzm1VncIiZKVe27T6yFXVESzi0KFD9OvXj8DAQAYOHEjlypU5deoUO3bsIDIyks8+++yRtWhUWpNH/l6EbTp3M8kuJjjL1jwitjDZ0BMd/tGmJzAz1Tu3v2JvgS/ZEe+jOorIps1/3yApNYN8Ltn6L2mTKlasyMmTJ2nWrBlz587llVdeeWQktWvXrvzvf/9TlDArnU7PL0evqY4hxBOtOxZj8xMj2v9aM3o9TC4Pd/PWmY2s1Gt7vn69Eu2qBqmOYTZjxoyhZ8+eFClSRHWUbNkZdZM35+5XHUOIJ/LzcGHfx03QOtjuRKMm94hotVpiYx+9VTQ+Pt46+0SuH89zRQjISr22aNVh+2g8+y+dO3dm5MiRqmNkW165XCZsW1xiKnvPx6uO8UxMHgf+rwGU1NTU/5xxVamzEaoTKBN4dRPzSpaUlXptxN7z8cTeS8Hf01V1lFwzaNCgLL//+eefSU5Oxt/f/5H3Tpo0yVKxniolPZPNf99QHUOIbFl79Bp1w6x8VvMnyHYh8u233wKg0WiYM2dOllkRMzMz+eOPP6xzQrM8XIjAg5V6g5lzJVh1FPEUOj1sP32T9tXs5+/qyJEjWX5frVo1NmzYgL+/PwEBAcbnrW39qn0XbtnNHA3C/m38+zpjX6uAo9aKp9B4gmwXIpMnTwYMIyIzZ87MchnG2dmZkJAQZs6cmfsJn0XqPbi8T3UKpWSlXtuyw84KkW3btj3y3JYtW1i4cCE//fSTgkTZs/20zFQsbMed5HQOX0qgRnHbbFrNdiFy4YJhTYxGjRqxatUqfHxs4I6MC3+ALl11CuVkpV7bsTPqJhmZOps9s8mOF198kRdffFF1jCfafjpvzesibN+fUTftvxB54N9nOJmZmZw4cYJixYpZX3Fi4csyOo0jae6FQGN9P0S0yfGsLLODXhet+weAtdHp4XaKjpQMy9xcdjclg0MXb1MztIBF9mdpV65cYe3atVy6dIm0tKxr7FhLj8jF+CQuxCVZdJ+ujhp8XB2w4RsfxL/o9HAzKRMLHTr4IyqOQU1LW2ZnuczkQuSDDz4gPDycXr16kZmZSYMGDdizZw/u7u78+uuv1rUC79nfLbarNFc/LtQYg87NF7Deo8mUUt7czrDCpmKrpSc9U0/E+URWnUrCEseU7Wdu2mUhEhERQatWrShevDinT5+mQoUKREdHo9frqVKliup4RpYcDdEAbcrmo0moB05aDdZ87BCm0nP7fgbj/7zFrRTzz2N14uod7txPx9vd9qZsMLkQWb58OW+88QZgWE0zOjqayMhIfvjhBz755BN27dqV6yFzJP4cJFhmxUw9GmLK9ETrG0Kwj6tVn9Xo0XDdIYC7cokme/R69BlpvOxs+H6tPGX+M+WdUTf5qLkVNn4/o2HDhjF48GBGjx6Np6cnK1euxN/fny5dutC8eXPV8Yx2RsVZbF9tyubj5TLe+Pj6oXF0Bitr2hXPQK/HIyGOTuHpTD9wx+wnMZk6PbvOxdEiPNDMe8p9Jhci8fHxxm739evX8/rrr1OqVCl69eplvLPGKlhwNCTD2Zv7BZ+jsLcr7k7WfyAJcYjnjEMRUnXWn9UaaJxc8PGFJqGZ/BZ13+yXaSJj7pGclombs30Vi6dOnWLJkiUAODo6kpycjIeHB6NHj6Z169a8++67ihMaHL182yL7cXPU0CTUAx9fPxzcPC2yT2FZbl4+hBdKxtP5LnfTzD+euuusbRYiJjczFCpUiJMnT5KZmcnGjRt54YUXALh//751TWhmwf6QTCcPcHDE2fpaQx5Lo0unhGOcDAKbQOPojJPWcB3f3DJ0ev66Zn8LreXLl4/U1FQAChcuzLlz54yvxcVZbhTiSS7fuk9cYtrT35gL8rs64KTVGEZChF3SaB3ROjiQz0I/HI5dSbDIfnKbySMiPXr0oH379gQGBqLRaIzd7/v27bOeeUR0mRD9p+X29//DqbY0quqYkUioqwvnUrxUR7ENGsP1e0tddjt6KYHqIbbZAf9fatWqxa5duyhXrhwtW7Zk8ODBnDhxglWrVlGrVi3V8QA4cjnBYvsy/FvS2NaBQ+SIpY4bZ64nkpqRiYujFQ0KZIPJhcjIkSOpUKECly9f5vXXX8fFxQUwTP0+dOjQXA+YIwkXId2yXe+2KF9aPAHOLlxPc1EdRfzLURs9s3mSSZMmkZiYCBiOI4mJiSxdupSwsDDjPEWqHb2UoDqCEDmWlqnj9PV7VAzKrzqKSUweL7pw4QLt2rVj4MCBBAU9XKCrW7dutG7dOlfD5Vj8edUJbEbBzOt4OmbmePuXalfkpzkznvieSsE+bN34W473kRfZ4w/E0NBQKlasCIC7uzvTp0/n+PHjrFq1imLFiilOZ3DEQv0heZ0cN8zn+BXbu6xr8ohIWFgYDRo0oFevXrRr1w5XVytcFyP+rOoEAIR8a9klxKP7FzZ5mx4DhnP7XhLj5qwgQ28YP9zy2y98PKAPfQcPo8e7A545V8ShSLy882f7/cMH9uXe3Tt8M3fRM+/bVl1NSCY+MZUCHjJaZSl6vZ5TMXdVxwCg1VTL3n24tl9dk97/uP+jctywDidssBAxeUTk2LFjVK5cmcGDBxMQEECfPn3Yv9/Klsq2kkLEVmj0OsKcbwGwaskPDOv/NsPGTMiVgwmAn38hnF3kB6qpzlt4Ui1z8PHxwdfXN1sP1a7dSSEl3fzzPdgjOW5Yj5NWUkybwuQRkQoVKjBp0iQmTJjAunXrWLBgAfXq1aNkyZL06tWLN998k4IFC5oja/bdOvf094gsnNPvsub7eYybMJHx383mhRatAPh9/VqmTRzH5ejzFPQvRMfub9OtT78s2yYlJjK0X2+2b9mIh4cnPfsNpHOPt42vVwr2YfLsn2jcvCUAN2Ku8fXoT9mzcysOGgcqV6/Fh6PGUyS4KDMmjWftiiXG7QDmLFvHrG8mEFqyNB9//pXxcxNu3+KFamWZ9sNyatZtYNbvjwrRcUk237D6zTffqI6QbRdu2n7hp8L8GVOYPnGcHDesxMV42/t3bHIhYtzQ0ZHXXnuNFi1aMH36dIYNG8aQIUMYNmwYHTp04MsvvyQwUNH9zDIiYrKhX3zLtAXLWPjjj5SrbbgT6uTxo/zv3R68M3AozVq9xrGD+/nikyHk9/GldfvOxm0XzvqOXv0G8s6goezesZWvR31M8RIlqd2g0SP7SU6+T+8OrahSozbzl/+G1tGR2d9+Td8327Fi859069OP81FnSEq8y+iJ0wDwzu9Dm45vMm74hwwZ/rnxLOm31cspWCiAGnXqW+A7ZHkX4++rjvDMunXrpjpCtl2IS1QdweZ8M24kSxfO5bv5P1OrfkNAjhuq3U3JIOF+Gvndbee28Bzf3Hzw4EH69u1LYGAgkyZNYsiQIZw7d46tW7dy9epVdY2rGalw54qafduoDdt28eW0BfwybxId6pXBXWsYnv5x9jRq1H2ePh/8j5DQMFq370zH7r1ZMOu7LNs/V60Gvd4bSEhoGJ17vM0LLVrx05zpj93Xxl9W4eDgwMivvqVk2fKElizN6InTuH71Cgf2/Il7Pg9cXV1xdnbBz78Qfv6FcHJ25oUWrdBoNGzbvN74Wb8sW0Tr1ztb3RLyuSXaBs9ssis5OZm7d+9meahmD5fCLOnP7b8zf/oUvpm7yFiEgBw3rMGlW7Z1EmNyITJp0iTCw8OpU6cO165d44cffuDixYt8/vnnFC9enLp16zJr1iwOHz5sjrxPd+sC6OU6rykqli1JSHBhRnw9k8R7dyiujcVBA+fPnqFy9ZpZ3vtctVpcunCOzMyHd9pUrFojy3sqVa3B+bNnHruvUyeOcjn6PLXLBFOrdBC1SgdRPzyU1NQUrly88J8ZnV1caNmmPWuWGhrRIv8+wZmTf9Hq9U45/WNbPXsrRJKSkujXrx/+/v54eHjg4+OT5aGapRe6s3WlypSncHBRpk/8gqTEe8bn5bihnq0VIiZfmpkxYwY9e/akR48exqne/61o0aLMnTv3mcPliFyWMVmRAH9Wzv6KRq/3oXmXfmxcNJUwH1f0ev0jky3p9dmbpvi/zjZ0Oh1lw59j3LffP/KaT4EnL/TWpuObtG/egBsxV1mz9Cdq1nuewkFFs5XHFtnDpZl/+vDDD9m2bRvTp0+na9euTJs2jatXrzJr1izGjx+vOh4xCSmqI9gU/4BAJn6/kN7tW9H3zXZM/3EF+Tw85bhhBWytEDF5RCQqKophw4b9ZxEC4OzsrO7asBQiOVK0SCA7VswmNu4WTTv1Je3WZcJLh3Fk/94s7zt2aB/FipfIMp3/icMHsrzn+OEDFC9R8rH7KRteiUsXzuHr50fR4qFZHp5e3gA4OTuTqXt0bpOSZctTrmJlVi7+gQ1rVvBq+y7P+se2avdSMkhJz/kcL9Zm3bp1TJ8+nXbt2uHo6Ej9+vX59NNP+eKLL1i0SP0tl/FJlpna3Z4EFglm3opfuRUXxztd2pJ47y4lSpaW44Zi1xKSVUcwicmFSGhoKD169DCuGfFAXFwcoaGhuRYsx27JZGY5FVS4ENtXzCb+9h2adurLe51bsH/XDmZ98xXR58+ydvkSfl4wh2593s+y3dGD+5g/YwrR58/y84LZbPntFzr3fOex+2jx2uvk9y3AgF5dOLxvN1cuXeTgnl18+dlQbsRcBaBwUDBRp/4m+lwUt2/Fk56ebty+Tac3mTf9GzJ1mTRu/rL5vhlW4k5y+tPfZCNu3bpF8eLFAfDy8uLWLcMt4/Xq1eOPP/5QGQ29Xk/CfSlEcqJQYBHmLFtHwu1bvNOlLW07d5fjhmJ3kjNURzCJyYVIdHQ0u3bton79+sTExBifz8zM5OLFi7kaLkdSbG8yF2tSJNCfHStnk3A3kQ8//4als75m87qVtH2hDtMnfkHfwcOydL4DvPl2P04eP0aH5s/z/bdfM3j459Rt2OSxn+/m5s78Fb8RWCSIQW935bXGNflsSD9SU1LI52FYgbRN524UCy1Jp5aNaVgpjKMH9xm3f6l1W7RaR1q0boeLNU6ml8sS7ttPIRIaGkp0dDQA5cqVY9myZYBhpCR//vzqgmEo+DJ05l8d1V4VCizMvOW/cu/uHSaNHcFXM+azcd0qOW4oYmtFtUaf3Yt3/0+r1RIVFcWQIUPYt28fa9asoXr16ty4cYPChQtnaUZS4ucuEPmrRXeZ4hHMhboTKV6kIK6O9teJneHowam0gljDYfr6tSu8VLsSi3/dStnwShbbrz4jjdhrVxi5LZar9yz3b3zp27WoGfrka+C2YvLkyWi1Wvr378+2bdto2bIlmZmZZGRkMGnSJAYMyJ2JsHLi/M1EGk/cYdF9FvHUMrKRP/6Fg2QFXjPLa8eNSkHe/NKvnsX296xMblbV6/V4eHiwatUqhg0bxvPPP8/3339vXIVXuUz7OYO0FtawUm96ejpxsdeZMm4UFatUs+jBRKUEO7o0M3DgQOPXjRo1IjIykoMHD1KiRAkqVVL793lL+kPsUl49btjaJV2TC5F/djWPGzeO8uXL89Zbb9Gpk5XcDqWzrb8AW6F6pd6jB/fRu/0rFAsNY+LMBUoyqHDHji7N/FvRokUpWtQ67l5ISrOfpmDxUJ49bth7IfLvKzlvvPEGJUqU4LXXXsu1UM9ERkTMpmDmdZIcg7iXoX36m3NZ9dr1OJYHV0a9n2ZbTWdP0r9/f8LCwujfv3+W56dOncrZs2eVTgefqZO5h+xRXj1uJKba1nHD5GZVnU6Hv79/ludq167NsWPH2Lp1a64FyzGdbf0F2BKNXkcxzQ0cNdbQLZI3ZNrRt3rlypXUrfvoKq916tRhxYoVChI9lCl1iLAjmTbWeG3yiEhycjJ6vR53d3cALl68yOrVqylXrhxNmzbN9YAmkxERs3LITCXM+RaRqfbRQGnt7OlMPT4+Hm9v70ee9/LyIi4uTkGih+zp+yyEjdUhphcirVu3pk2bNrzzzjskJCRQs2ZNnJyciIuLY9KkSbz77rvmyJl90iNids7pdynvnIE+50sV2ZwUTSaOjvdYVWQxzimW+6GZ6dINKGGx/ZlTWFgYGzdupF+/rKuwbtiwQfkcRDIiYhl+Tmn4a/LOFAuqjht6NEBLi+3vWZlciBw+fJjJkycDsGLFCgoVKsSRI0dYuXIlI0aMUF+IZMqlGUvQZtjWFMLPyjFTj0NmCt5xh3FNvGy5HevsZ/KlQYMG0a9fP27evEnjxo0BiIiIYOLEiUr7QwAyTZvFQORQIc3tPHXsUHbccDD5R7tSJqe9f/8+np6GCWQ2b95MmzZtcHBwoFatWtYxoZmMiAh7onVSnSDX9OzZk9TUVMaOHcuYMWMACAkJYcaMGXTt2lVpNq0dr8RqLfyc0vJUEaKUg20dN0weWw8LC2PNmjVcvnyZTZs2GftCYmNj8fJSN8+EUabMB5DXJdy5x6hJs7geq7bvIFfYUSEC8O6773LlyhVu3LjB3bt3OX/+vPIiBMDNOe9cZlTFX5OgOsIT2ddxw7YmyDP5f9+IESMYMmQIISEh1KxZk9q1awOG0ZHKlSvnekCT2diQlD0aOXEmz73YUdn+uw/8jNTUNAL8/bK9jerM/8nGDijZcfPmTU6fPs2xY8eUN6k+4OYkxw1z8nVKxzEj6YnvUf1/0L6OG7b179nktO3ataNevXrExMRkmQ2xSZMm1jGXiLuf9azA+31Dy+7v7e0mb9L9g89YuHwdfd5oy8wvP8nyWt9h45jxw3K6vf4KC74Zle3PHPJOV97voeY/58SZP+KZz52xQ/s9/c3/oDLzE9nYEOuTJCUl8f777/PDDz+g+/+7VLRaLV27duW7774z3omngoeLdR24K84pZtH9He9t2mX14QP7snbFEtq90Z3h4yZneW3sx4NZ9uM8WrXrxJjJ0wEIcEiAp8wZJ8eNXGRjJzAmj4hs2bIFb29vKleujIPDw81r1KhBmTJlcjVcjuTLfjUrDIILB/Dz2k0kJ6cYn0tJSWXJLxspWiTA5M/zyOdOAd/8uZgw+wa/8yY/fvd5lhmAs0Nl5idy91GdINcMGjSIHTt2sG7dOhISEkhISOCXX35hx44dDB48WGk2LzfrKkRsQUDhImxau4qU5IdLzqempLBh7UoCiwQZn8vvlIFjeuJTP0+OG7nIzVd1ApOYXIi0bduW/PnzU6dOHYYNG8amTZtITHz6PzKLyVdQdQKbUyW8DEWLBLBqw8MJ6VZt2Epw4UJUrvCwuNTr9UyYvoDQ2q/gUrwmlV7owLZdB4yvd//gMzRFqjzy2L77IACpqWl8+Pk3BFd7CZfiNSlZtzVzl6x56rajJ39PeJP2j+Su2rwzI76aAfDYbUNqGm5f2777IJoiVYjYuY9qL3XBvUQd6rTqzumz0cbPstoh1vwhqhPkmpUrVzJ37lxeeuklvLy88PLyokWLFsyePVv5hGbebvYz8mQpZStUIqBwEBEb1xmfi9iwjoDAIpQpX9H4XIDmthw3LM3HsiNqz8rkQuT27dts376dVq1aceTIEV5//XV8fX2pVasWQ4cONUdG00ghkiM92rdi/tK1xt/P+/kXenZoneU9n345jc+nzGXkoD4c37KUFk3q0bLrAGJu3ARgyughxBzZbHwM6NUJfz9fyoSFANB1wHB+/mUz3475H6e2r2Tm+I/xcHd76rY9O7Tm5JnzHDj6tzHL8ZNnOPLXabq3fwUgy7Znd/1CWEgwDWpWyZL/ky+nMXHEIA5u+AlHRy09B2f/cpMaGsgfrDpErrl//z6FChV65Hl/f3/u31d7N4W3mxPOWmlYNVXr9l34Zdli4+/XLFvEqx3eMP7e2zGDkZ+Pl+OGpeW3jjWcssvk/3larZbatWszdOhQNm7cyO7du+ncuTOHDh3iq6++MkdG03j4P/094hFvtmvJnweOEn35GhevXGPXwWO80baF8fWk+8lMmr2IkYP60PX1lykdFsK4Ye9TrlRxpi1YBoC3lycB/n4E+Pux++AxZi1axao5XxPg78eZcxdZtm4L8yZ+xmsvNSa0WBBN6tekQ+tmj9125k8rWTn7KwL8/QgqXIhmDWtnKZTmL13L87WqElrMMAT8YNtCBQvwv8+/wdvLg1n/6nkZ+9F7PF+7KuVKhTL0vR7sPniMlJRUc39rc84zABzVLDJoDrVr1+azzz4jJeXhJcDk5GRGjRplbHpXRaPREODtqjSDLXq5bQeOHNjL1cuXuHblEkcP7KNlm4ejEF4pMUyW44bl5bfzEZFTp04xc+ZMOnbsSGBgII0bN+bu3btMnDiRw4cPmyOjabwKq05gk/x8fWjZpB4Ll69j/tK1tGxcDz/fh/0JJ8+cJyUllZca18myXd3qz3Hs5Jkszx35K5KuA0Yw44th1K3+HABH/z6NVqvl+dpZzzb+7cG208YOpV6Nh3dhvdX5NZb8spGUlFTS09NZtHoDPTu2emT7j8dPZc+hE6yZOwk3t6w/WCqWK2X8OrCQoZcoNv7WE/MoZWMHk6eZMmUKu3fvJigoiCZNmvDCCy8QHBzM7t27mTJliup4FMnvpjqCzfHxLUD9xk1Zt2IJvyxbTP0mTfHxNSz/4OSgJ+rkMTluqGBjIyImd2iVL1+eggUL8sEHHzB8+HDKly9vjlw5Z2cHb0vq2aE1/T79EoBpY7NeZntwl0P1Fm9meT4tPZ3wMmHG31+PjaNV94G882Y7und4+B/ezfXpZ/YPtu3V6VV6dXo1y2uvvNgAF2dnVm/chouzE6lp6bRt2STLe35a+RuTZy9i+/LvCSr86CUAJ8eH/9w1aP7/z2XFM2ra2MHkaSpUqEBUVBQ//fQTkZGR6PV6OnbsSJcuXXBzU18EFPFRn8EWvdqhC+OGfwjAx58/HBV306Shl+OGGjbWI2JyIdK/f3/++OMPRo4cyZo1a2jYsCENGzakfv36eHh4mCOjaWzsL8CaNG9Uh7R0w8y0zRpmHSovVyoUFxdnVnw/gbCQrH0LLs6GW8VSUlJp3XMQ4WXDmPDpgCzvCS9bEp1Ox449h3mhQc1H9v1g2zJhIUz6bNAjrzs6OtLt9ZeZv3QtLs5OdGzVFPd//PDac/AYvf83hlnjP6FW1YqPbG+T7PDfspubG2+99ZbqGI8lIyI5U7fhC6SnGY4bdZ43/JDXavRodely3FDFxk5iTC5EHqwJkZCQwM6dO9mxYwcjRozgxIkTPPfcc+zduze3M5rGxRPcC8D9eLU5bJBWq+XU9pXGr//J0yMfQ/q8yejJsxk95F1KhgaTmppO1IVLuLu5ElwkgD4fjSXmRhw/ThlDbNzDoUvf/N6EBBem2+sv03PwKL4d8z8qlSvFxSsxxMbdon2rpvT5aCyXr10nYulMbsbfzrKts7PhjobenV6jbMO2AOxaM8/4nuuxcbzWewgdWzWjWcPaxpkRtVotBQvY8O2vMrpnUTIikjNarZY12/YavwZw1WQAjnLcUME1P7g+usq1NcvxzfM6nY6MjAzS0tJITTVcf4uOjs7FaM8gfzEpRHLIy/O/R7XGfNgX/3k/0+/TLzl/6Qrp6RnUrlqR8R+/D8COvYe4fO06pRtkndhu2/LvaVinGjPGfczH46fS9+NxxN++Q9HCAXzcv6dx25gbcZRr2O6x2wKUDC1KnWoVib99h5pVwo3viTwbzY2b8Sxcvo6Fyx/eSlgsKJDofb892zdEJRs7q7F1JQrmUx3BZnl4Plzew12rQ6tPBwy9FnLcsDAbHEnV6PWmLTs5YMAAtm/fzt9//42vry8NGjQwXp6pUKGCuXKaZkUv+Mty8xKkeARzoe5EihcpiKtj3lg8KzU1jVqvdGPn6rl45LPMjJh6vZ4yDdrQ5422DOrzxtM3yEUpGXouXL1J8V2DLbeK5oBj4BNimX0JklIzCB+5CUtd/i/iqWVkI3/8CwehcbStmTCfpKTLHdzSH9/MKccNCyj7CnT4yTL7yiUmj4hcvXqVt956y7oKj38Lqm7RQiQv+uv0WdIzMvDI505GRgaOjuadmTI27hY/rviNq9dj6dHh0a53u6PRglfQ098nck0+F0eKFcjHhbgnr4ki/purgw7X9Nv/+bocNyzABi/pmvyvQPUMiNlSTO2cBHlBqdBiuDg7UaRqM77/8lNavlDfrPsrVOkF/Hzz8/2ET/HJbwWrPJtbgRI2t3CVPShX2EsKkWcQ5JyIJu2/h5TkuGEBBUurTmAy+zzSFQoHFy9Ivas6id3y9MjHoY2Ln/7GXKK/agVz1FhSSD3VCXJdZmYmkydPZtmyZVy6dIm0tLQsr9+6pX5uhnKBXvx2PEZ1DJvk4qDH7QmjISDHDYuwwWOHfc5p7OAAwTVUpxAi54o3UJ0g140aNYpJkybRvn177ty5w6BBg2jTpg0ODg6MHDlSdTwAyhfOI2fNZhDklIhGr1MdI2/zLgq+oapTmMw+CxGAorVUJxAihzQQYn+FyKJFi5g9ezZDhgzB0dGRTp06MWfOHEaMGKH+tv//VznYB4e80W+eq5wd9LhnqB/RyvOKm/dSl7nYcSFS5+nvyS3/f+ORafcfCVti/Lu1xF9yofKQr4D592Nh169fJzzccPukh4cHd+7cAeDll1/mt9+s43ZJb3cnylloVMRwd47eLg4cQU5JMhryGBY9bgAUf94y+8ll9luIFKkKWsvcEqdNTwRdBmny/9Bu3U8HMtNwSrHA/DR2eFkGICgoiJgYQ/9FWFgYmzdvBuDAgQO4uFjP4n51S/hZZD8JKTrSM/XoM9Ke/mYr5qjRk09GQx4rTQfoMtCm37PMDm302GFys6otNJwB4OQKhavAZfMP+Tqm3cH95lFu5vPBycdVhnbtiF5vKEJibyWQ/+IGtJnJ5t+pjR5Mnua1114jIiKCmjVrMmDAADp16sTcuXO5dOkSAwcOVB3PqHaJAsz647zZ95OcoSfifCIvO2vx8cUwl4jG9g4e/s73SU3PUB3D6uj0cPNOCu6xh3FMs8CNEwVKgleg+fdjBiYXIqNGjWLOnDkMGjSI4cOH88knnxAdHc2aNWsYMWKEOTLmXLHaFilENOgJjJzHBa/iXEz2BWzvYCKeIDON/Bc3EBBlgW5/jRaK1TX/fhQYP3688et27doRFBTE7t27CQsLo1Ur65njoUZxX5y0GtIzzT+cvuqU4VbhJqGZOGk12Nqxw0Gjx0lzm5v6TNVRrJAeh+RbFD29AA0WuDRjwycwJs+sWqJECb799ltatmyJp6cnR48eNT63d+9eFi+23K1ZT3VmMyx+3WK702kcSXPzBwft098sbINej1NKvGVGQgCKVIO3IiyzL/GfXp+5mwPRT74VNTe5OmrwcXWwudHUz4oep8GNH1THsE66TJyTY3HQW2i06PWFUP5Vy+wrl5k8IvKkhrPhw4fnbrpnVbQmODiCzjL/EBz0Gbjev2aRfQk7ZcNnNdlx+vRpvvvuO06dOoVGo6FMmTK8//77lC5tXZMwNS0XYNFCJCVDT0yibY0q5HPMpMmNeWgTZd4V9TQ2fewwuVnVVhrOAMMKhGEvqE4hRPbZ8MHkaVasWEGFChU4dOgQlSpVomLFihw+fJgKFSqwfPly1fGyeCk8QHUEqze22DEpQqxFQAVw91WdIsdMHhGxlYYzo+c6w5mNqlMI8XQu3lDUfpcn+PDDDxk2bBijR4/O8vxnn33GRx99xOuvW+4y6tME+bhTKcibY1fuqI5ilVwcdLx8b6nqGOKBks1UJ3gmJveI/NvevXutsuHMKCMNJpaGZCu5m0eI/1K9N7ScqDqF2bi7u3P8+HHCwsKyPB8VFUWlSpW4f/++omSPN2vHOcZtiFQdwyqNDz1Bx2vjVMcQAGhgwFGbXqn7mecRqVWrFoMGDbLOIgTA0RnCredMS4j/VLWH6gRm1bBhQ3bu3PnI83/++Sf161vfjJAtwm3zVkhz02p0tE2S0RCrEdrQposQyOGid7bScGb0XGfYP0t1CiH+W5Gqhuu8dmbt2rXGr1u1asVHH33EoUOHqFXLsATD3r17Wb58OaNGjVIV8T8F+7rzXHB+jl5OUB3FqgwPOY1TjPnnWRHZVLWb6gTPzORLMytWrKBTp05Uq1aN2rUN17P37t3LgQMHWLx4sVVd581iRl248ZfqFEI8XqvvoEpX1SlynYND9gZdNRoNmZnWd9fIsgOX+XDlcdUxrIZGoycyYDQut0+rjiIA8hWEQadA66Q6yTMxuRAJDQ3ljTfeeGzD2Y8//sj581ZaKe+eCps/UZ1CiEe5eMHgSHDOpzqJ+JfktExqfvE7d1Nk5lCAocXO8M6NkapjiAfqDoAXRz/9fVbO5B6R69ev07Xro2dub7zxBtevX8+VUGZRsYNhThEhrE14uzxRhFy6dInU1NRHntfr9Vy6dElBoqdzc9bSpkqQ6hhWo1vmCtURhJEGqtj+ZRnIQSFiaw1nRh4FoWRT1SmEeJSdN6k+EBISQpUqVTh37lyW52NjYylevLiiVE/XpWZR1RGswoDg87jFyeVtq1G8PhQooTpFrsjWEIEtN5xl8VxnOL1edQohHipcGQIrqk5hMWXLlqVGjRosW7aMJk2aGJ9/xlkEzKpkIU9qFPdl/4W8PQXAW6xUHUH8U9XuqhPkmmz1iNh6w5lRZjp8WxnuXFadRAiDV6bY1QHlSbRaLTExMSxatIhhw4YxYcIE+vfvz40bNyhcuLBVHzs2/X2dPj8eUh1DmbeDLvJx3DDVMcQD7n6GJlVHZ9VJckW2KgydTpethzUfSABDZ3HDoapTCGHg7AkV2qlOYTEPznkGDhzI6tWrGTFiBL17935s34i1aVquEGUCPFXHUKafdo3qCOKfnutkN0UI5KBHxBYbzrKo1An8rHS+E5G31HwbXDxUp1DipZdeYvfu3Wzfvp2XX35ZdZyn0mg0vNco7OlvtENdC1/D68Y+1THEA45uUOs91SlylcmFiK02nBk5aKGx3MYrFHPND3X6q05hUc8//zzOzg/P4sqVK8f+/fvx8fGx6h6RB1qGBxJa0P7vbvq3D5zXqI4g/qnGW+BlX7P+5miK9wcNZxEREVmet4WDCQDlWhuaBIVQpd4H4JZfdQqL2rZtG/nz58/ynK+vLzt27ECn06kJZQIHBw19G+atUZG2hW7ge/1P1THEAy7eUM8KF5d9RiYXIhqNhunTp/Ppp5/SsmVLvv322yyv2Ywmn6lOIPIqjwCo0Ud1Cotbv349mzZteuT5zZs3s2HDBgWJTPfqc4UJ9cs7oyJD861THUH8U51+4O6rOkWuM7kQseWGsyxKNILiDVSnEHlRgyHg7K46hcUNHTr0sQ3tOp2OoUNto4ncUevAxy3Kqo5hES0KxlHw2lbVMcQD7n5Qq6/qFGbxTKvv2lrD2SNkVERYml/pPDOB2b9FRUVRrly5R54vU6YMZ8+eVZAoZ14oV4j6Jf1UxzC74V6/qY4g/qnxJ3bb3G5yIWLrDWdZBFWDMjZYQAnb1XwcaPPmUgPe3t6PXYvq7Nmz5MtnW5c7Pm1ZDq2DDV2KNlHjArcJuLZFdQzxQEA4VOmuOoXZmFyI2HrD2SMaDwfNMw0MCZE9pV6CsCZPf5+datWqFR988EGWO+7Onj3L4MGDadWqlcJkpisd4EmnGsGqY5jNSJ+NaPQ2eDy3V82/hGxOLGqLTP6T2UPDWRb+Zexy+XVhZbTO0Gys6hRKffXVV+TLl48yZcpQvHhxihcvTtmyZSlQoABff/216ngmG/RiafK72/by649T2+cOwVdlKQyrUf41CKmrOoVZmVyI2EPD2SNeHAPe9nt2I6xArb52s0BVTnl7e7N7925+++03+vbty+DBg4mIiGDr1q2PjLLaAt98znxih42rY/22oNFb+SzZeYWjm+Hnk53L1loz/+Tm5sapU6cICQnJ8nx0dDTly5cnKSkpN/NZzrlt8OOrqlMIe+RfDt7aBk6uqpMIM3hz7j52RsWpjpErqngnsjL9PTS6dNVRBEDLSVC9l+oUZmdy19yDhrN/FyK22HCWRYlGhrsZDs1XnUTYEyd3aDc/zxYh3377LW+//Taurq5Z5hx6nP79bXOm2XFtwmn+zU4SUzNUR3lm4/wj0FyWIsQqlG2VJ4oQyMGIyNtvv83evXtZvXo1JUoYhprPnj1L27ZtqV69OnPmzDFLUItITYQZtSHBBtbMEbYhD62u+zjFixfn4MGDFChQ4IlLQGg0msfeUWMrft5/iaGrTqiO8UzKetxnvf49NJk2NieUPfIuCu/szDOzL5tciNy5c4fmzZtz8OBBgoKCALhy5Qr169dn1apVNnmtN4uLe2BBS5BrpOJZlX8NXl+gOoWwkF4LDhARGas6Ro6tK/kb4ZcXqY4hHByhxwYIrqE6icWYXIiAYXbVLVu2cOzYMdzc3KhYsSINGtjRLKXbv4TtX6hOIWxZ/mKGMxpXb9VJhIXcTkrj5e/+5GpCsuooJivhnszv2vfRpN9XHUU0Hm6YfTkPyVEhYvd0OvihFUTvVJ1E2CIHJ+i50TBhXh43aNCgbL930qRJZkxiGUcu3ab9rD2kZ9rWYXVlyc1UvbxAdQwR2hDeWG3Xc4Y8TraaVfNCw1kWDg7QZjbMrAv341WnEbam8adShPy/I0eOZOt9NrVg5hNULurDxy3KMmrdSdVRsi3INZUqN1aojiHyFYTXvs9zRQhkc0QkrzScPeLMZljSAWSGQZFdJRrDG6vATn6wipx5b/FhfjseozpGtiwpuY3al2erjpHHaaDLCij5guogSsilmafZPxvW563rdSKHPArBO7vAo6DqJEKxxNQM2kzfxZkbiaqjPJG/Szp73QbgkJKgOkreVud9aPq56hTK5L0xIFPVeAsafKg6hbB2Tvmgw09ShAgAPFwcWdCjBoW8XFRHeaIJRfdJEaJayWZ5fiX4bI2I5LWGs8da94FMdiYeT+sCXZZD6POqkwgr8/e1O3SYtdcqJzvzccrgkMcgHJLtY1ZYmxRS33BJJo9OePhAtppV81rD2WO1nGRoXD21VnUSYU0cHKH9QilCxGOVL+zNtC5V6LXgABk667oK/mWxgzhckSJEmaDq0OnnPF+EgPSImCYjFX5qK7f1CgPN/99dFd5OdRJh5ZYeuMRHK61n5tV8jpkc9x6CNumG6ih5U6Fw6P5rnpk59WmkR8QUji7QaQkEVlKdRCinMUzfLkWIyIYO1Ysy/OVyqmMYjQs5IkWIKgVKwpurpQj5BylETOXiCV1Wgm+o6iRCpWZfQJWuqlMIG9KrXnGrKEbctJm0uLNUdYy8KX9R6PqLNLX/ixQiOeFR0FDRegSoTiJUaPQJ1O6rOoWwQdZQjIwudgLHe1eVZsiTPAIMRYh3EdVJrI4UIjnlEwLd1hnWFBF5R53+8Lzczi1yrle94oxQVIw4Oeh5NWmZkn3naW6+hiJERtIfSwqRZ1GwFLy1FYJrqk4iLKHuAGg6RnUKYQd61ivOuDbhODpY9k7DEcX+xulOtEX3med5Foaua8C/jOokVkvumskNGamwpi/8Jes12CWtC7T6Fip1VJ1E2Jltp2Ppt+gwSWmZZt+XVqPjVMAonG9HmX1f4v8VqQYdF4GnXMZ/EhkRyQ2OLtB2Djz/keokIrd5BECP9VKECLNoVNqfpX1q4+9p/hlYhxY7I0WIJVXqZDh2SBHyVDIiktuOLYW1/SAzTXUS8ayKVIUOi8ArUHUSYeeuJiTTfd5+omLNtzZNZJHPcY23nVWBbZZGCy+OMqwfI7JFRkRyW6UOhqYkN1/VScSzqNgBuq+XIkRYRJH8bqzsW4dm5QuZ5fMHFzsnRYgluHpDl2VShJhIRkTM5dZ5WNQe4mUo1KZoHOCFkYbGVCEUmP3Heb7cGJmrU8L/HTyBfDeP5trnicfwKwUdl4BfmOokNkdGRMzFNxR6bzGsrChsg4s3dF4mRYhQ6q0Gofz8di0CvHJnDZJ3g6OlCDG3sBeh9+9ShOSQjIhYwrGfYeNQSL6tOon4L/7loP0P4FdSdRIhAIhPTOWDpUfZGfVsC9OdKDoJz9iDuZRKZKFxgLofQOPh4CDn9TklhYilJMbCb4Nl9V5r4+AE9QcbHo7OqtMIkYVer2fRvkuM3xBJYmqGydt3K3yFUbdkAj6zKFgGWk+DoGqqk9g8KUQs7eQv8NsQSIpVnUQEPmc4kARUUJ1EiCe6mpDM0JXHTR4dORIyDZ/ru8yUKo9ycDSMgjz/kZy85BIpRFS4fws2DoPjP6tOkjc5uhmmaa87ABy0qtMIkW1L9l/ii99OcS8boyMdAq/z5e1BFkiVhwRUhNZTZQX2XCaFiEpRW2DdB3D3iuokeUeZlw0r5/rIGkHCNt24m8KEjadZdeQKTzp6Hwz9Hr9r2y2Wy6655ofGn0K1XnmqFyQhIYEpU6bQp08fAgLMNzFb3vmOWqOSL0LfPVCtp2ESHGE+viWgy0rDdMtShAgbVsjLlYntK/HLe3WpVsznse95xf+mFCG5QgNVusL7h6HGWxYvQkaOHMlzzz1n0X3+U/fu3UlNTTWpCMlJZhkRsRY3z8D2cfD3akD+SnKNa36o2x9qvy/Xc4VdWnfsGuM3RHI1Idn43N7Q+QRc26IwlR0oWhuajoWgqtl6e/fu3Vm4cCF9+vRh5syZWV7r27cvM2bMoFu3bixYsCDbERITE0lNTaVAgQKmJM8VEydO5OjRo/zwww9oNNlfnDEnmaUQsTY3/oZtX0Dkr6qT2DbvYKjV13A24+KhOo0QZpWSnsmS/ZeYueMcFZ1j+D7xfTRyQpMDGij9kqF/rGgtk7bs3r07W7du5e7du8TExODm5gZASkoKgYGBeHl50ahRI5MKkbxCLs1Ym0LlDZcP3t4OZV8x3Kcuss+/PLw2C/ofhdp9pQgReYKrk5YedYuz43+NGN24AJr8RVVHsi1aZ6j8Bry3HzotMbkIeaBKlSoULVqUVatWGZ9btWoVwcHBVK5c2ficXq9nwoQJhIaG4uLiQqVKldi2bZvx9e7du6PRaB55bN++HYDU1FQ+/PBDgoODcXFxoWTJksydO/ep244ePZrw8PBHcletWpURI0YAPHbbkJAQALZv345GoyEiIoJq1arh7u5OnTp1OH36tPGzcnJpRn7K5ZKEhARGjRrF9evXc+cDC1eGDj9Bv4NQtQc45s4si3YrpD50WQF9dxtWytU6qk4khMW5OmkJrNIC+h+BtnPl7o6ncfEyjH4MOG64lb9gqWf+yB49ejB//nzj7+fNm0fPnj2zvOfTTz/l888/Z+TIkRw/fpwWLVrQsmVLYmJiAJgyZQoxMTHGx4ABA/D396dMmTIAdO3alZ9//plvv/2WU6dOMXPmTDw8PJ66bc+ePTl58iQHDhwwZjl+/DhHjhyhe/fuAFm2PXv2LGFhYTRo0CBL/k8++YSJEydy8OBBHB0dH/nzmcpuLs2MHDmSNWvWcPToUSX7f/XVVylXrhxffPFFtrcxKXPiTdg/Cw4tlDlIHtA4GO6CqftBtq/jCpHnnNsGe6YaftVnqk5jHTwDoeY7hhsFXL1y5SO7d+9OQkICc+bMISgoiMjISDQaDWXKlOHy5cv07t2b/PnzM23aNPz8/Bg7diyDBj28vbpatWo0b96czz//PMvnrlq1ii5duvD7779Tt25dzpw5Q+nSpdmyZQsvvPDCEzOtWrWKzp078/vvv1OvXj0AWrRoQUhICNOnTwdg4MCBHD16NMuIDBhGbdq2bculS5fYuXMnbm5ubN++nUaNGvH777/TpEkTANavX0/Lli1JTk7G1dU1Rz+LlYyIPBg6eueddx55rW/fvmg0GmN1ll1DhgwhIiIilxKaZuLEiXh6ejJ27FiTtjMps0dBw+1jgyOh61rDKIm75RuYrIJvKNTpbxgt6vCjFCFCPEmJRvDGSsOxo8XXUKxe3rzkq3U2rAnz6gzDCEi9D3KtCPknPz8/WrZsycKFC5k/fz4tW7bEz8/P+PrJkydJSUnhpZdeyrJd3bp1OXbsWJbnjhw5QteuXZkxYwZ169YF4OjRo2i1Wp5//vkn5niw7bRp04xFCMBbb73FkiVLSElJIT09nUWLFj12ROPjjz9mz549rFmzxtjv8kDFihWNXwcGGlYoj43N+QmysvHr4OBgfv75ZyZPnpylqWfJkiUULWr69U0PDw/j0JSlDR48OEfb5SizgxZCnzc8WnwN0X/AX6sMza32vJZNQEVDz0yZl6FQOdVphLA9Hv6GW1BrvAX3rhtmef57NVzai93eqefsYZgmoczLULKpWQqPx+nZsyf9+vUDYNq0aVle0+l0AFSvXj3L82lpaVn6N65fv06rVq145513spyY/7soeJwH2/bq1YtevXplee2VV17BxcWF1atX4+LiQmpqKm3bts3ynp9++onJkyezfft2goKCHvl8Jycn49cP7qh58OfKCWVlsTT15MI94lpHKNHYMNPfkChDj8RzXcDVO+efaS00DlCsLjQbZzh7eWenYTZUKUKEeHaeAVCzD/TcCINOGv6fBVUHsn+bptVy94PKbxpW0v7wPLy+AMLbWawIAWjevDlpaWmkpaXRrFnWFdjLlSuHi4sLK1as4OjRo8bHyZMnWbNmDWA4KW/dujXh4eFMmDAhy/bh4eHodDp27Njx2H0/2LZMmTJMmjTpkdcdHR3p1q0b8+fPZ/78+XTs2BF3d3fj63v27KF3797MmjWLWrVy1rRrKqUdfQ+aerp06QI8bOp5UESAoannu+++Y+rUqdSsWZMFCxbQsmVLzp07R2BgIFOmTGH8+PHG948fP54lS5ZkaerZs2cP3377LZUqVeLChQvExRnWa3jStmFhYYwaNYoDBw4YK9cHTT3Lly8HMDYWASQlJdG8eXNq166d5c/4oKmnYMGCvPPOO/Ts2ZNdu8yw9oPWyVD5l3wRMr6Bc1sheidcOwoxxyDtXu7vM7c5e0KxOlD2ZSjdAvL5PX0bIcSz8SpsuMOsdl9IuAyn18OVg3DtCMSfxfpHSzTgWxxKNTeMfBStpXzpBq1Wy6lTp4xf/5OnpydDhgxh9OjRjB49mpIlS5KamkpUVBTu7u4EBwfTp08fYmJi+PHHH7Nc8vD19SUkJIRu3brRs2dP48+1ixcvEhsbS/v27enTpw+XL18mIiKCmzdvZtnW2dkwl1Lv3r0pW7YsQJafR9evX+e1116jY8eONGvWzHjzhVarpWDBgub5ZqG4EHnzzTcZNmwY0dHRaDQadu3axc8//2wsRJKSkpg0aRJjx46la9euAIwbN44tW7Ywbdo0Pv/8c7y9vfH2NowArFq1ilmzZvH7778TEBDAmTNnWLZsWZamntDQUOP+/73tzJkzjdsCNGvWjPnz5xsLkfnz5/P8888bP+PB+x409Xh7ezNr1qwsf8axY8car+UNHTqUli1bkpKSgqurGe+CcXSG0s0ND0NAiIsyHFhijv7/r8chPcl8GZ5IAz4hhsXmCj14lDc8Z8LEOUKIXJY/2DBSUrOP4fep9wwnMteOPHzcuoCy4sTZA/zLPjxmBISDfzmLjnZkl5fXf2caM2YM/v7+9OvXj/Pnz5Oenk7t2rWNJ8Y7duzg8uXLlC5dOst227Zto2HDhsyYMYOPP/6Yvn37Eh8fT9GiRfn444+N28bExFCuXLnHbgtQsmRJ6tSpQ3x8PDVr1jS+JzIykhs3brBw4UIWLlxofL5YsWJER0c/y7fjiZTcNfOgu3jNmjW0bduWihUrotfr+euvv1ixYgWvvvoq+fPn57333qNGjRqcPHnSWL0BDBgwgPPnz7Nu3Trjc0eOHKF+/fpMnTrVeD1t2bJldO7cmeTk5CzXtP7twbZTpkzJcj1t9erV9OzZk5iYGLRaLUWKFGHixIm8+eabWbYfNmwYCxYs4MCBA8braQ+6i2NjY42V5JEjR6hSpQoXL16kaNGiau/00ekg7rRhxOTaEbh9wbAYX/Itw68pd3jmg41GC275oUDYowcOmd9DCNuUcufhceP6CUi8YehPu3/L8GtG8lM/4qmc3A09Lf7l//+EpbzhGOIbancnK6mpqdSqVYudO3darM9Rr9dTpkwZ+vTpk+XOHVWUT7YgTT2KODgYziz8y8JznR59XZcJyQmGA8uD4uTBr2mJhktBjm7g6GKY48TJ1XBpxd0X3HwMv7rmt7uDhhB5nqv3w4b5x0lPznq8SL71sFDR6x4eMx48nFwNxwp3X8OdgG6+hufyiL/++ov09HQ8PDzIyMjA0dG8P5ZjY2P58ccfuXr1Kj169DDrvrJLeSHyoKkHeGJTT1hYWJbXXFxcgOw39TzufmtTmnpcXFysoqnHYhy0kK+A4SGEENnl5AbeRQwP8VSlSpXCxcWFIkWK8P3339OyZUuz7q9QoUL4+fnx/fff4+Pz+EUTLU15ISJNPUIIIfIqT09PDh06ZLH9WeMcpsoLEZCmHiGEECKvsqkp3qWpRwghhLAvVjEikl3S1COEEELYF5tacOCfTT2bNm0y+/4KFSrE+PHjraqpRwghhLAnNnVpRgghhBD2xaZGRIQQQghhX6QQEUIIIYQyUogIIYQQQhkpRIQQQgihjBQiQgghhFBGChEhhBBCKCOFiBBCCCGUkUJECCGEEMpIISKEEEIIZaQQEUIIIYQyUogIIYQQQhkpRIQQQgihjBQiQgghhFBGChEhhBBCKCOFiBBCCCGUkUJECCGEEMpIISKEEEIIZaQQEUIIIYQyUogIIYQQQhkpRIQQQgihjBQiQgghhFBGChEhhBBCKCOFiBBCCCGUkUJECCGEEMpIISKEEEIIZf4PIXi2G8HrgvkAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# OK, widzimy już co nieco jak to trochę działało. Na uwagę przykuwa to, że to, czy ocalał, nie ma \n",
"# 100% korelacji z tym, czy miał łódkę - przyjrzymy się temu bliżej. Widać, że fakt posiadania kabiny był \n",
"# pewnym luksusem, który korelował z ceną, klasą biletu, a nawet miało jakieś znaczenie w tym, czy ten ktoś ocalał\n",
"# widać, że wiek koreluje z klasą biletu - wiadomo - statystycznie tych starszych bardziej może na to stać, jak\n",
"# i może się przekładać na rosnącą potrzebę komfortu wraz z wiekiem\n",
"\n",
"# W każdym razie na wszelki wypadek narysujmy sobie jeszcze rozkłady w zależności \"ocalał\" od innych czynników\n",
"# aby zobaczyć, czy da się z tego coś wyciągnąć\n",
"plt.clf()\n",
"\n",
"for k, desc in [\n",
" ('klasa_biletu', 'klasa biletu'),\n",
" ('wiek', 'Wiek'),\n",
" ('oplata', 'Opłata'),\n",
" ('l_rdz_młż', 'l. rodzeństwa/małż'),\n",
" ('l_dzieci_rodz', 'l. rodziców/dzieci'),\n",
" ('mial_lodke', 'Czy miał łódkę'),\n",
" ('mial_kabine', 'Czy miał kabinę'),\n",
" ('cena_1os', 'Cena za osobę'),\n",
"]:\n",
" df4 = df3[df3[k].notnull()][['ocalal', k]]\n",
" for survived in [0, 1]:\n",
" add_to_title = ' (ocalał)' if survived else ' (nie ocalał)'\n",
" df5 = df4[df4['ocalal'] == survived][k].copy()\n",
" df5.name = desc + add_to_title\n",
" # print(df5)\n",
" # df4.plot(kind='hist', subplots=True, sharex=True, sharey=True, title=k + add_to_title)\n",
" df5.hist(legend=True, alpha=0.8)\n",
" plt.show()\n",
" plt.clf()\n"
]
},
{
"cell_type": "markdown",
"id": "d78a5e38-dddf-4623-b6ec-799057170be4",
"metadata": {},
"source": [
"## Wnioski z wykresów\n",
"- To co się rzuca w oczy, to klasa biletu zdawała się mieć kluczowe znaczenie na fakt przeżycia, albo nie Mniej więcej tyle samo osób ocalało z klasy 1 co i z klasy 3, ale za to zginęło prawie 5x więcej z klasy 3 co z klasy 1 A to jest bardzo duża dysproporcja.\n",
"\n",
"- Co do kwestii wieku, to raczej nie odgrywa on zbyt wielkiej roli, ale dzięki rozkładowi można było zobaczyć jeden szczegół niewidoczny na tablicy korelacji - tzn. starano się jednak uratować przede wszystkim dzieci...\n",
"\n",
"- Widać też dysproporcję pomiędzy tymi, co ocaleli i nie mieli kabiny od tych, co mieli kabinę wobec proporcji tych, co nie ocaleli i nie mieli kabiny od tych, co mieli kabinę. Tutaj ci co mieli kabinę - to właśnie byli VIP-ami i najwyraźniej mieli pierwszeństwo do łódek ratunkowych.\n",
"\n",
"- Tak jak wcześniej zauważyłem - Będąc kobietą miałeś 72.7% szans na przeżycie, a będąc mężczyzną miałeś 19.1% szans na przeżycie."
]
},
{
"cell_type": "code",
"execution_count": 65,
"id": "9936308c-bd86-49d7-b26c-218502999ee3",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
klasa_biletu
\n",
"
ocalal
\n",
"
plec
\n",
"
wiek
\n",
"
l_rdz_młż
\n",
"
l_dzieci_rodz
\n",
"
oplata
\n",
"
kabina
\n",
"
port
\n",
"
lodz
\n",
"
cialo
\n",
"
dest
\n",
"
mial_lodke
\n",
"
mial_kabine
\n",
"
\n",
" \n",
" \n",
"
\n",
"
19
\n",
"
1.0
\n",
"
0.0
\n",
"
M
\n",
"
36.0
\n",
"
0.0
\n",
"
0.0
\n",
"
75.2417
\n",
"
C6
\n",
"
C
\n",
"
A
\n",
"
NaN
\n",
"
Winnipeg, MN
\n",
"
1
\n",
"
1
\n",
"
\n",
"
\n",
"
166
\n",
"
1.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
30.6958
\n",
"
NaN
\n",
"
C
\n",
"
14
\n",
"
NaN
\n",
"
New York, NY
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
192
\n",
"
1.0
\n",
"
1.0
\n",
"
K
\n",
"
58.0
\n",
"
0.0
\n",
"
0.0
\n",
"
146.5208
\n",
"
B80
\n",
"
C
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
358
\n",
"
2.0
\n",
"
1.0
\n",
"
K
\n",
"
42.0
\n",
"
0.0
\n",
"
0.0
\n",
"
13.0000
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
New York, NY
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
395
\n",
"
2.0
\n",
"
1.0
\n",
"
K
\n",
"
18.0
\n",
"
0.0
\n",
"
1.0
\n",
"
23.0000
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Southampton
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
396
\n",
"
2.0
\n",
"
1.0
\n",
"
K
\n",
"
34.0
\n",
"
0.0
\n",
"
1.0
\n",
"
23.0000
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Southampton
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
458
\n",
"
2.0
\n",
"
1.0
\n",
"
K
\n",
"
17.0
\n",
"
0.0
\n",
"
0.0
\n",
"
10.5000
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Guernsey
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
489
\n",
"
2.0
\n",
"
1.0
\n",
"
K
\n",
"
42.0
\n",
"
1.0
\n",
"
0.0
\n",
"
26.0000
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Weston-Super-Mare, Somerset
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
513
\n",
"
2.0
\n",
"
1.0
\n",
"
K
\n",
"
14.0
\n",
"
1.0
\n",
"
0.0
\n",
"
30.0708
\n",
"
NaN
\n",
"
C
\n",
"
NaN
\n",
"
NaN
\n",
"
New York, NY
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
544
\n",
"
2.0
\n",
"
0.0
\n",
"
M
\n",
"
34.0
\n",
"
1.0
\n",
"
0.0
\n",
"
21.0000
\n",
"
NaN
\n",
"
S
\n",
"
12
\n",
"
NaN
\n",
"
Elizabeth, NJ
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
545
\n",
"
2.0
\n",
"
1.0
\n",
"
K
\n",
"
30.0
\n",
"
3.0
\n",
"
0.0
\n",
"
21.0000
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Elizabeth, NJ
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
572
\n",
"
2.0
\n",
"
1.0
\n",
"
K
\n",
"
28.0
\n",
"
0.0
\n",
"
0.0
\n",
"
12.6500
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Columbus, OH
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
655
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
32.0
\n",
"
1.0
\n",
"
0.0
\n",
"
15.8500
\n",
"
NaN
\n",
"
S
\n",
"
D
\n",
"
NaN
\n",
"
Ruotsinphytaa, Finland New York, NY
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
656
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
33.0
\n",
"
3.0
\n",
"
0.0
\n",
"
15.8500
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
Ruotsinphytaa, Finland New York, NY
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
780
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
23.0
\n",
"
0.0
\n",
"
0.0
\n",
"
8.0500
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
London New York, NY
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
853
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
25.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.2500
\n",
"
NaN
\n",
"
S
\n",
"
B
\n",
"
NaN
\n",
"
NaN
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
860
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
26.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.9250
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
870
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
27.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.9250
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
921
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
7.2500
\n",
"
NaN
\n",
"
S
\n",
"
A
\n",
"
NaN
\n",
"
NaN
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
926
\n",
"
3.0
\n",
"
1.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
7.7500
\n",
"
NaN
\n",
"
Q
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
968
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
36.0
\n",
"
1.0
\n",
"
0.0
\n",
"
15.5500
\n",
"
NaN
\n",
"
S
\n",
"
A
\n",
"
NaN
\n",
"
NaN
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
969
\n",
"
3.0
\n",
"
0.0
\n",
"
K
\n",
"
30.0
\n",
"
1.0
\n",
"
0.0
\n",
"
15.5500
\n",
"
NaN
\n",
"
S
\n",
"
A
\n",
"
NaN
\n",
"
NaN
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
1000
\n",
"
3.0
\n",
"
1.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
7.7500
\n",
"
NaN
\n",
"
Q
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1007
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
15.0
\n",
"
0.0
\n",
"
0.0
\n",
"
8.0292
\n",
"
NaN
\n",
"
Q
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1037
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
7.2292
\n",
"
NaN
\n",
"
C
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1071
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
NaN
\n",
"
1.0
\n",
"
0.0
\n",
"
15.5000
\n",
"
NaN
\n",
"
Q
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1078
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
7.8792
\n",
"
NaN
\n",
"
Q
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1094
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
31.0
\n",
"
0.0
\n",
"
0.0
\n",
"
8.6833
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1198
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
7.7792
\n",
"
NaN
\n",
"
Q
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1290
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
47.0
\n",
"
1.0
\n",
"
0.0
\n",
"
7.0000
\n",
"
NaN
\n",
"
S
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1299
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
27.0
\n",
"
1.0
\n",
"
0.0
\n",
"
14.4542
\n",
"
NaN
\n",
"
C
\n",
"
C
\n",
"
NaN
\n",
"
NaN
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
1300
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
15.0
\n",
"
1.0
\n",
"
0.0
\n",
"
14.4542
\n",
"
NaN
\n",
"
C
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" klasa_biletu ocalal plec wiek l_rdz_młż l_dzieci_rodz oplata \\\n",
"19 1.0 0.0 M 36.0 0.0 0.0 75.2417 \n",
"166 1.0 0.0 M NaN 0.0 0.0 30.6958 \n",
"192 1.0 1.0 K 58.0 0.0 0.0 146.5208 \n",
"358 2.0 1.0 K 42.0 0.0 0.0 13.0000 \n",
"395 2.0 1.0 K 18.0 0.0 1.0 23.0000 \n",
"396 2.0 1.0 K 34.0 0.0 1.0 23.0000 \n",
"458 2.0 1.0 K 17.0 0.0 0.0 10.5000 \n",
"489 2.0 1.0 K 42.0 1.0 0.0 26.0000 \n",
"513 2.0 1.0 K 14.0 1.0 0.0 30.0708 \n",
"544 2.0 0.0 M 34.0 1.0 0.0 21.0000 \n",
"545 2.0 1.0 K 30.0 3.0 0.0 21.0000 \n",
"572 2.0 1.0 K 28.0 0.0 0.0 12.6500 \n",
"655 3.0 0.0 M 32.0 1.0 0.0 15.8500 \n",
"656 3.0 1.0 K 33.0 3.0 0.0 15.8500 \n",
"780 3.0 1.0 K 23.0 0.0 0.0 8.0500 \n",
"853 3.0 0.0 M 25.0 0.0 0.0 7.2500 \n",
"860 3.0 1.0 K 26.0 0.0 0.0 7.9250 \n",
"870 3.0 1.0 K 27.0 0.0 0.0 7.9250 \n",
"921 3.0 0.0 M NaN 0.0 0.0 7.2500 \n",
"926 3.0 1.0 M NaN 0.0 0.0 7.7500 \n",
"968 3.0 0.0 M 36.0 1.0 0.0 15.5500 \n",
"969 3.0 0.0 K 30.0 1.0 0.0 15.5500 \n",
"1000 3.0 1.0 M NaN 0.0 0.0 7.7500 \n",
"1007 3.0 1.0 K 15.0 0.0 0.0 8.0292 \n",
"1037 3.0 1.0 K NaN 0.0 0.0 7.2292 \n",
"1071 3.0 1.0 K NaN 1.0 0.0 15.5000 \n",
"1078 3.0 1.0 K NaN 0.0 0.0 7.8792 \n",
"1094 3.0 1.0 K 31.0 0.0 0.0 8.6833 \n",
"1198 3.0 1.0 K NaN 0.0 0.0 7.7792 \n",
"1290 3.0 1.0 K 47.0 1.0 0.0 7.0000 \n",
"1299 3.0 0.0 M 27.0 1.0 0.0 14.4542 \n",
"1300 3.0 1.0 K 15.0 1.0 0.0 14.4542 \n",
"\n",
" kabina port lodz cialo dest mial_lodke \\\n",
"19 C6 C A NaN Winnipeg, MN 1 \n",
"166 NaN C 14 NaN New York, NY 1 \n",
"192 B80 C NaN NaN NaN 0 \n",
"358 NaN S NaN NaN New York, NY 0 \n",
"395 NaN S NaN NaN Southampton 0 \n",
"396 NaN S NaN NaN Southampton 0 \n",
"458 NaN S NaN NaN Guernsey 0 \n",
"489 NaN S NaN NaN Weston-Super-Mare, Somerset 0 \n",
"513 NaN C NaN NaN New York, NY 0 \n",
"544 NaN S 12 NaN Elizabeth, NJ 1 \n",
"545 NaN S NaN NaN Elizabeth, NJ 0 \n",
"572 NaN S NaN NaN Columbus, OH 0 \n",
"655 NaN S D NaN Ruotsinphytaa, Finland New York, NY 1 \n",
"656 NaN S NaN NaN Ruotsinphytaa, Finland New York, NY 0 \n",
"780 NaN S NaN NaN London New York, NY 0 \n",
"853 NaN S B NaN NaN 1 \n",
"860 NaN S NaN NaN NaN 0 \n",
"870 NaN S NaN NaN NaN 0 \n",
"921 NaN S A NaN NaN 1 \n",
"926 NaN Q NaN NaN NaN 0 \n",
"968 NaN S A NaN NaN 1 \n",
"969 NaN S A NaN NaN 1 \n",
"1000 NaN Q NaN NaN NaN 0 \n",
"1007 NaN Q NaN NaN NaN 0 \n",
"1037 NaN C NaN NaN NaN 0 \n",
"1071 NaN Q NaN NaN NaN 0 \n",
"1078 NaN Q NaN NaN NaN 0 \n",
"1094 NaN S NaN NaN NaN 0 \n",
"1198 NaN Q NaN NaN NaN 0 \n",
"1290 NaN S NaN NaN NaN 0 \n",
"1299 NaN C C NaN NaN 1 \n",
"1300 NaN C NaN NaN NaN 0 \n",
"\n",
" mial_kabine \n",
"19 1 \n",
"166 0 \n",
"192 1 \n",
"358 0 \n",
"395 0 \n",
"396 0 \n",
"458 0 \n",
"489 0 \n",
"513 0 \n",
"544 0 \n",
"545 0 \n",
"572 0 \n",
"655 0 \n",
"656 0 \n",
"780 0 \n",
"853 0 \n",
"860 0 \n",
"870 0 \n",
"921 0 \n",
"926 0 \n",
"968 0 \n",
"969 0 \n",
"1000 0 \n",
"1007 0 \n",
"1037 0 \n",
"1071 0 \n",
"1078 0 \n",
"1094 0 \n",
"1198 0 \n",
"1290 0 \n",
"1299 0 \n",
"1300 0 "
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# dziwne, że są tacy. co mieli łódkę, ale zginęli. Są też tacy, co łódki nie mieli, ale przeżyli... \n",
"# Spójrzmy na nich\n",
"df2[((df2['ocalal'] == 1) ^ (df2['mial_lodke'] == 1))]"
]
},
{
"cell_type": "code",
"execution_count": 67,
"id": "cd1e17fb-8281-4778-84e2-d7e183c17746",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
klasa_biletu
\n",
"
ocalal
\n",
"
plec
\n",
"
wiek
\n",
"
l_rdz_młż
\n",
"
l_dzieci_rodz
\n",
"
oplata
\n",
"
kabina
\n",
"
port
\n",
"
lodz
\n",
"
cialo
\n",
"
dest
\n",
"
mial_lodke
\n",
"
mial_kabine
\n",
"
\n",
" \n",
" \n",
"
\n",
"
19
\n",
"
1.0
\n",
"
0.0
\n",
"
M
\n",
"
36.0
\n",
"
0.0
\n",
"
0.0
\n",
"
75.2417
\n",
"
C6
\n",
"
C
\n",
"
A
\n",
"
NaN
\n",
"
Winnipeg, MN
\n",
"
1
\n",
"
1
\n",
"
\n",
"
\n",
"
235
\n",
"
1.0
\n",
"
1.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
39.6000
\n",
"
NaN
\n",
"
S
\n",
"
A
\n",
"
NaN
\n",
"
Paris / New York, NY
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
317
\n",
"
1.0
\n",
"
1.0
\n",
"
M
\n",
"
21.0
\n",
"
0.0
\n",
"
1.0
\n",
"
61.3792
\n",
"
NaN
\n",
"
C
\n",
"
A
\n",
"
NaN
\n",
"
Geneva, Switzerland / Radnor, PA
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
603
\n",
"
3.0
\n",
"
1.0
\n",
"
K
\n",
"
35.0
\n",
"
1.0
\n",
"
1.0
\n",
"
20.2500
\n",
"
NaN
\n",
"
S
\n",
"
A
\n",
"
NaN
\n",
"
East Providence, RI
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
605
\n",
"
3.0
\n",
"
1.0
\n",
"
M
\n",
"
25.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.6500
\n",
"
F G63
\n",
"
S
\n",
"
A
\n",
"
NaN
\n",
"
Perkins County, SD
\n",
"
1
\n",
"
1
\n",
"
\n",
"
\n",
"
630
\n",
"
3.0
\n",
"
1.0
\n",
"
M
\n",
"
27.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.7958
\n",
"
NaN
\n",
"
S
\n",
"
A
\n",
"
NaN
\n",
"
NaN
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
881
\n",
"
3.0
\n",
"
1.0
\n",
"
M
\n",
"
21.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.7958
\n",
"
NaN
\n",
"
S
\n",
"
A
\n",
"
NaN
\n",
"
NaN
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
921
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
7.2500
\n",
"
NaN
\n",
"
S
\n",
"
A
\n",
"
NaN
\n",
"
NaN
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
968
\n",
"
3.0
\n",
"
0.0
\n",
"
M
\n",
"
36.0
\n",
"
1.0
\n",
"
0.0
\n",
"
15.5500
\n",
"
NaN
\n",
"
S
\n",
"
A
\n",
"
NaN
\n",
"
NaN
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
969
\n",
"
3.0
\n",
"
0.0
\n",
"
K
\n",
"
30.0
\n",
"
1.0
\n",
"
0.0
\n",
"
15.5500
\n",
"
NaN
\n",
"
S
\n",
"
A
\n",
"
NaN
\n",
"
NaN
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
1088
\n",
"
3.0
\n",
"
1.0
\n",
"
M
\n",
"
32.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.7750
\n",
"
NaN
\n",
"
S
\n",
"
A
\n",
"
NaN
\n",
"
NaN
\n",
"
1
\n",
"
0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" klasa_biletu ocalal plec wiek l_rdz_młż l_dzieci_rodz oplata \\\n",
"19 1.0 0.0 M 36.0 0.0 0.0 75.2417 \n",
"235 1.0 1.0 M NaN 0.0 0.0 39.6000 \n",
"317 1.0 1.0 M 21.0 0.0 1.0 61.3792 \n",
"603 3.0 1.0 K 35.0 1.0 1.0 20.2500 \n",
"605 3.0 1.0 M 25.0 0.0 0.0 7.6500 \n",
"630 3.0 1.0 M 27.0 0.0 0.0 7.7958 \n",
"881 3.0 1.0 M 21.0 0.0 0.0 7.7958 \n",
"921 3.0 0.0 M NaN 0.0 0.0 7.2500 \n",
"968 3.0 0.0 M 36.0 1.0 0.0 15.5500 \n",
"969 3.0 0.0 K 30.0 1.0 0.0 15.5500 \n",
"1088 3.0 1.0 M 32.0 0.0 0.0 7.7750 \n",
"\n",
" kabina port lodz cialo dest mial_lodke \\\n",
"19 C6 C A NaN Winnipeg, MN 1 \n",
"235 NaN S A NaN Paris / New York, NY 1 \n",
"317 NaN C A NaN Geneva, Switzerland / Radnor, PA 1 \n",
"603 NaN S A NaN East Providence, RI 1 \n",
"605 F G63 S A NaN Perkins County, SD 1 \n",
"630 NaN S A NaN NaN 1 \n",
"881 NaN S A NaN NaN 1 \n",
"921 NaN S A NaN NaN 1 \n",
"968 NaN S A NaN NaN 1 \n",
"969 NaN S A NaN NaN 1 \n",
"1088 NaN S A NaN NaN 1 \n",
"\n",
" mial_kabine \n",
"19 1 \n",
"235 0 \n",
"317 0 \n",
"603 0 \n",
"605 1 \n",
"630 0 \n",
"881 0 \n",
"921 0 \n",
"968 0 \n",
"969 0 \n",
"1088 0 "
]
},
"execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Niesamowita sprawa - najwięcej z tych, którzy ocaleli pomimo braku łódki - to były kobiety... \n",
"# Jest to o tyle dziwne, że za burtą było znacznie więcej mężczyzn, niż kobiet.\n",
"# Czy to może spowodowane tym, że były na jakieś łodzi, ale tych danych brakuje? \n",
"# Czy to może dlatego, że ci z łodzi ratowali kobiety i dobijali ponad miarową ilość?\n",
"# przyjrzyjmy się też łodzi A - coś się z nią stało? Czy zatonęła? Najwięcej tych, \n",
"# którzy nie przeżyli pomimo posiadania łodzi, to było w łodzi A. Ile tam było osób?\n",
"\n",
"df2[df2['lodz'] == 'A']"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "87a12738-bb84-4130-8668-14f13593cdee",
"metadata": {},
"outputs": [],
"source": [
"# Jednak więcej z tej łodzi się uratowała. Może miała jakąś wywrotkę, zatonięcie,\n",
"# albo był tam jakiś inny incydent?"
]
},
{
"cell_type": "code",
"execution_count": 174,
"id": "b679bd6e-609e-4b78-b9a3-03dea4b08bb2",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRr0lEQVR4nO3de1xUdf4/8NcIw3BHEWVARkVFTEFTdFVsRZOLd037otkqKBqmUqSupW4bal5yEy/ol6hYIQ3RVnGtTMFMvKAb8oUStbJCRINIQxCEYYDz+8MfJ0eug8NyZnw9Hw8eD+ecz/nM5z2HM7w8V5kgCAKIiIiIJKRdWw+AiIiI6FEMKERERCQ5DChEREQkOQwoREREJDkMKERERCQ5DChEREQkOQwoREREJDkMKERERCQ5pm09gJaoqanBL7/8AhsbG8hksrYeDhERETWDIAi4d+8enJ2d0a5d4/tIDDKg/PLLL1CpVG09DCIiImqBvLw8uLi4NNrGIAOKjY0NgAcF2tra6rVvjUaD5ORk+Pv7Qy6X67VvKTD2+gDjr5H1GT5jr5H1Gb7WqrGkpAQqlUr8O94YgwwotYd1bG1tWyWgWFpawtbW1ih/8Yy9PsD4a2R9hs/Ya2R9hq+1a2zO6Rk8SZaIiIgkhwGFiIiIJIcBhYiIiCTHIM9BaQ5BEFBVVYXq6mqdltNoNDA1NUVFRYXOyxoCY68PMP4aWZ9hMjExgampKW+NQNRMRhlQKisrkZ+fj/v37+u8rCAIUCqVyMvLM8ovEmOvDzD+Glmf4bK0tISTk5PR1UXUGowuoNTU1CAnJwcmJiZwdnaGmZmZTl8GNTU1KC0thbW1dZM3kTFExl4fYPw1sj7DIwgCKisr8dtvvyEnJwfdu3dv6yERSZ7RBZTKykrU1NRApVLB0tJS5+VrampQWVkJc3Nzo/lyfJix1wcYf42szzBZWFhALpcjNzcXGo2mrYdDJHnGs/U/wpi+2IjIONR+LwmC0MYjIZI+/hUnIiIiyWFAoVZ39+5drFmzBgUFBW09FCIiMhAMKE+AiIgIPP300232/sHBwVCr1VAqlc1epqkxnzp1CjKZDHfv3m2wjYmJCQ4fPtzg/O7du2Pbtm3NHpO+NaeGuLg4tG/fXnwdERGBQYMGtf7gGjFy5EgkJCQ0u31z6pSCUaNGITw8vNntr1+/DplMhqysLADApUuX4OLigrKystYZINETxuhOkm3MpKizTbYRIKCmuhrtTEwgw+NdCvhp2DM6tQ8ODkZ8fDxCQ0Px3nvvac1btGgRoqOjERQUhLi4OJ36Xb58OcLCwnRaRl+2bNkCGxsbrF+/Xqflmhqzt7c38vPzYWdn97hDlLQZM2Zg/PjxLV7++vXrcHV1RWZmpl5C6meffYaCggLMnDmz2cs8KevK09MTf/rTn7B161b87W9/a+vhEBk87kGRGJVKhcTERJSXl4vTKioqsG/fPnTt2rVFfVpbW6Njx476GqJOli1bhj179uh834emxmxmZgalUmn095OwsLBA586d23oYoh07dmDu3Lk6nYT+pKwrAJg7dy6io6ON6gZzRG2FAUViBg0ahK5du+LQoUPitEOHDkGlUmHgwIFabQVBwObNm9GjRw8oFAoMGDAAX331lTg/ODgYMplM68fExARnzz7Yk6RWq7FixQqoVCooFAq4ubkhNja2wWVlMhlOnTqFtWvXwtPTs87Yvby88Pe//x0A6l229t4Ptbv8v/zySwwePBiWlpbw9vbG999/L/alj0M8j1q7di0cHR3FXfKPioyMhKenJ6ysrKBSqbBo0SKUlpaK83NzczFp0iR06NABVlZW6NevH44ePQoAqK6uRkhICFxdXWFhYQF3d3ds3769WeM6d+4cBgwYAHNzcwwdOhSXLl0S5z16iKc+u3fvxlNPPQVzc3P06dMH//u//yvOc3V1BQAMHDgQMpkMo0aNAlD/4YypU6ciODi4wfe5ffs2Tpw4gcmTJ2tNl8lk+PDDD/Hcc8/B0tISbm5uOHLkiDi/vnWVlpaGkSNHwsLCAiqVCq+88kqTh0aio6PRs2dPmJmZwd3dHXv27NGaf/fuXbz00ktwdHSEubk5PDw88NlnnwEA7ty5gxdeeAEuLi6wtLSEp6cn9u3b1+j77d27F4MHD4aNjQ2USiVmzZqFwsLCej+X2toCAgJw584dpKamNto3ETXtiTrEYyjmzp2L3bt348UXXwQA/POf/8S8efNw6tQprXZ/+9vfEBUVhZ07d2Lo0KGIi4vDhAkT8NNPP8HJyQnbt2/Hpk2bxPabNm3Cvn374ObmBgCYM2cOzp8/jx07dmDAgAHIycnB7du3AaDBZfv06YNevXphzZo1SE9Px5AhQwAA3377LTIzM/HJJ58AAPLz88Vly8rKMHbsWAwfPlxr/KtXr8aWLVvQqVMnLFy4EPPmzcO5c+f09Cn+QRAEhIeH4/Dhwzh79qxY/6PatWuHHTt2oHv37sjJycGiRYuwYsUK8Q/+4sWLUVlZidOnT8PKygpXrlyBtbU1gAf37nBxccGBAwfg4OCAtLQ0vPTSS3ByckJgYGCj4/vrX/+K7du3Q6lUYtWqVZg8eTJ++OGHZj3i/IMPPsBbb72FnTt3YuDAgcjMzMSCBQtgZWWFoKAgfP311/jTn/6EEydOoF+/fjAzM9Px0/vD2bNnYWlpiaeeeqrOvDVr1mDz5s34xz/+gaioKLz44ovIzc2Fvb19nbaXLl1CQEAA1q1bh9jYWPz2229YsmQJlixZgt27d9f73klJSXj11Vexbds2+Pr64rPPPsPcuXPh4uKC0aNHo6amBuPGjcO9e/ewd+9e9OzZE1euXIGJiQmAB3shvby88Prrr8PW1haff/45Zs+ejR49emDo0KH1vmdlZSXWrVsHd3d3FBYW4rXXXkNwcLAYSmvNnDkTCQkJ8Pf3h5mZGQYMGIAzZ87g2Wef1fUjJiPWnFMMpEQuq0GQqm3HwIAiQbNnz8bKlSvFk/DOnTuHxMRErYBSVlaGyMhIrF+/HnPmzAEAbNy4ESkpKdi1axfefvtt2NnZicf9Dx06hJiYGCQnJ8PR0RE//PADDhw4gJSUFPj6+gIAevToIfb/6LLvvfceTpw4IZ7oGhAQgN27d4sBZffu3fDx8RH7qG0nCAKmT58OOzs7xMTEaNW5fv16+Pj4AADeeOMNTJgwARUVFTA3N9fbZ1lVVYU5c+bg4sWLOHfuHFxcXBps+/AeBVdXV6xbtw4vv/yyGFBu3LiB6dOni3uPHv685HI51qxZo7V8WloaDhw40GRAeeutt+Dn5wcAiI+Ph4uLC5KSkppcDgDWrVuHLVu2YNq0aeL7XrlyBTExMQgKCkKnTp0AAB07dtTpJOX6XL9+HY6OjvUe3gkODsYLL7wAANiwYQOioqLw9ddfY+zYsXXa/uMf/8CsWbPEz9vNzQ07duyAj48PoqOj6w1R7777LoKDg7Fo0SIAwNKlS3HhwgW8++67GD16NE6cOIGvv/4aV69eRe/evQFor58uXbpg+fLl4uuwsDAcO3YMn3zySYMBZd68eeK/e/TogR07duBPf/oTSktLYW5uLu4h+/jjj+Hv76/1XtevX6+3TyJqPgYUCXJwcMCECRMQHx8PQRAwYcIEODg4aLW5cuUKKioqMG7cOK3pI0aMwDfffKM1LTMzE3PmzEF0dDRGjBiBkpISZGVlwcTERAwIDalddteuXXjmmT9O+l2wYAHmzZuHyMhImJiY4OOPP8aWLVvqLL9q1SqcP38e6enpsLCw0JrXv39/8d9OTk4AgMLCwhafa1Of1157DQqFAhcuXKjzGT7qq6++woYNG3DlyhWUlJSgqqoKFRUVKCsrg5WVFV555RW8/PLLSE5Ohq+vL6ZPn65Vw3vvvYcPP/wQubm5KC8vR2VlZbNOTH14z5K9vT3c3d1x9erVJpf77bffkJeXh5CQECxYsECcXlVV1SonpJaXlzcYHh/+HKysrGBjY1Pv4RAAyMjIwI8//oiPP/5YnCYIgviYCnd39zrLXL16FS+99JLWtBEjRoghISsrCy4uLmI4eVR1dTU2bdqE/fv349atW1Cr1VCr1bCysmqw3szMTERERCArKwu///47ampqADwIqmVlZbh16xYAwNHRUWs5CwuLFj0HjIi08RwUiZo3bx7i4uIQHx+v9T+5WrVflkOGDIG1tbX4Ex0djV9++UVsV1BQgMmTJ2PhwoVa5xc8GhbqU7tsSEgIQkJCtOZNmjQJCoUCSUlJ+PTTT6FWqzF9+nStNnv37sXWrVuRlJRU756Lhw9h1J5AWVuXvvj5+eHWrVs4fvx4o+1yc3Mxfvx4eHh44ODBg8jIyMCuXbsAQLwt+fz58/Hzzz9j9uzZuHTpEgYPHoyoqCgAwIEDB/Daa69h3rx5SE5ORlZWFubOnYvKysoWjbs5J5TWflYffPABsrKyxJ/s7GxcuHCh0WXbtWtX526mTd1+3cHBAUVFRfXOe/RwlEwma3Bd1tTUIDQ0VGvM33zzDa5du4aePXs2+P6PfiaCIIjTmvp93rJlC7Zu3YoVK1bg5MmTyMrKQkBAQIPrp6ysDP7+/rC2tsbevXuRnp6OpKQkAA8O/QwZMgSbN2+ud9nff/9d3HNFRC3HPSgSNXbsWPHLMyAgoM78vn37QqFQ4F//+hd69eqlNU+hUAB4cNx9ypQp8PT0rPNl6unpiZqaGqSmpoqHeB5Wu2yfPn0QGRlZZ76pqSmCgoKwe/duKBQKzJw5U+vZR+fPn8f8+fMRExODYcOG6f4B6MnkyZMxadIkzJo1CyYmJg1eHnvx4kVUVVVhy5Yt4iGMAwcO1GmnUqmwcOFCLFy4ECtXrsQHH3yAsLAwnDlzBt7e3uIhCAD46aefmjXGCxcuiHuNioqK8MMPP6BPnz5NLufo6IguXbrg559/Fs9XelTt4ZJHryrp1KmT1nlC1dXVyM7OxujRoxt8v4EDB6KgoABFRUXo0KFDk+NryKBBg3D58uU6v7e16gs2Tz31FM6ePSsezgQenGhbez5M//79cfPmTfzwww/17kU5c+YMpkyZgr/85S/ie1y7dq3e82kA4LvvvsPt27exadMmqFQPDsRfvHixWfVlZ2fj+eefb1ZbImoYA4pEmZiYiLv5a0/0e5iNjQ2WL1+OtWvXYu3atXBzc4Narca1a9dgaWkJlUqF0NBQ5OfnY8+ePeLu9pqaGpiamqJ79+4ICgrCvHnzxJNkc3NzUVhYiMDAQISGhiIvLw9ffvklfvvtN/F97e3txT968+fPF7/gHz65taCgAM899xxmzpyJgIAA8Q6yJiYmbfI/y+eeew579uzB7NmzYWpqWu8fj549e6KqqgpRUVGYNGkSzp07V+deNOHh4Rg3bhx69+6NoqIinDx5Uqy/V69e+Oijj3D8+HG4urpiz549SE9PF6+iaczatWvRsWNHODo6YvXq1XBwcMDUqVObVVtERAReeeUV2NraYty4cVCr1bh48SKKioqwdOlSdO7cGRYWFjh27BhcXFxgbm4OOzs7PPvss1i6dCk+//xz9OzZE1u3bm3yiqiBAweiU6dOOHfuHCZOnNis8dXn9ddfx7Bhw7B48WLxhN6rV68iJSVF3CP1qL/+9a8IDAzEoEGDMGbMGHz66ac4dOgQTpw4AQDw8fHByJEjMX36dERGRqJXr1747rvvIJPJMHbsWPTq1QsHDx5EWloaOnTogMjISBQUFDQYULp27QozMzNERUVh4cKFyM7Oxrp165qs7fr167h161a9oZ+IdMNDPBJma2sLW1vbBuevW7cOM2fOxJIlS+Dm5gZ3d3esX79eDDSpqanIy8uDu7s7nJyc4OTkhC5duuDrr78G8OCyzeeffx6LFi1Cnz59sGDBAvFSz9TUVOTn56Nv377isk5OTkhLSxPf383NDd7e3nB3d9c60fC7777Dr7/+ivj4eK1la0+obQvPP/884uPjMXv2bK1LuGs9/fTTiIyMxDvvvAMPDw98/PHH2Lhxo1ab6upqLF68GE899RTGjh0Ld3d38QTahQsXYtq0aZgxYwaGDh2KO3fuaO1NacymTZvw6quvwsvLC/n5+Thy5Eizr7aZP38+PvzwQ8TFxcHT0xM+Pj6Ii4sTg5GpqSl27NiBmJgYODs7Y8qUKQAeHEIMCgrCnDlz4OPjA1dX10b3ngAPAua8efO0zh1pif79+yM1NRXXrl3Dn//8ZwwcOBBvvvmmeB5SfaZOnYrt27fjH//4B/r164eYmBjs3r1bvGwaAA4ePIghQ4bghRdeQN++fbFixQpxz9Gbb76JQYMGISAgAKNGjYJSqWw0BHbq1AlxcXH45JNP0LdvX2zatAnvvvtuk7Xt27cP/v7+6NatW7M/DyKqn0wwwMdqlpSUwM7ODsXFxXX+gFdUVCAnJweurq4tuhqkpqYGJSUlsLW1NagnIqvVagwbNgxnzpwRL32tjz7rEwQBffr0QWhoKJYuXfpYfemToa7D5mrL+n799Vf069cPGRkZrfZH2FDXn1qthpubG/bt24cRI0bU26b2+8nFxQUnT57E+PHjm3U5uaHRaDQ4evQo63uIYV5mXKT3ddjY3+9HGc7WT43Kzs6GRqOBtbU1qqqqWv39CgsLERkZiVu3bmHu3Lmt/n4kDY6OjoiNjcWNGzfaeiiSk5ubi9WrVzcYTohINzwHxUj07t0bCoUCXbp0wfvvv48JEya06vs5OjrCwcEB77///mOdMEmGp/YwEWnr3bt3g5c5E5HuGFCMhI2NDTIyMv5r72eARwaJiMiAPNYhno0bN0Imk2ndgVMQBERERMDZ2RkWFhYYNWoULl++rLWcWq1GWFgYHBwcYGVlhcmTJ+PmzZuPMxQiIiIyIi0OKOnp6Xj//fe17iAJAJs3b0ZkZCR27tyJ9PR0KJVK+Pn54d69e2Kb8PBwJCUlITExEWfPnkVpaSkmTpzIJ4ASERERgBYGlNLSUrz44ov44IMPtM4/EAQB27Ztw+rVqzFt2jR4eHggPj4e9+/fR0JCAgCguLgYsbGx2LJlC3x9fTFw4EDs3bsXly5dEu9pQERERE+2Fp2DsnjxYkyYMAG+vr54++23xek5OTkoKCjQenCWQqGAj48P0tLSEBoaioyMDGg0Gq02zs7O8PDwQFpaWr13Ta19bkatkpISAA8u9Xr09twajUZ8rkdLbptee25FbR/GxtjrA4y/RtZnuGpqaiAIgnilXVOPFzBUtXWxvj/IZYb1uyyXPdgO9b0OdelP54CSmJiI//u//0N6enqdebV3DH304VmOjo7Izc0V25iZmdW58sPR0VFc/lEbN27UelJsreTkZK3bqwMPbkylVCpRWlra4uegANA6JGWMjL0+wPhrZH2Gp7KyEuXl5eIND1NSUtp4RK2L9f0hSNWKA2lF+l6HujxIU6eAkpeXh1dffRXJycmN3gStsYd6NaSxNitXrtS6EVhJSQlUKhX8/f3rvVFbXl4erK2tW3SjNkEQcO/ePdjY2DTrgW2Gpi3qu3v3Lnbs2IGXXnoJSqWy1d+P69CwGXN9FRUVsLCwgLe3N06fPg0/Pz+jvZFZSkoK63vIjJjzrTwq/ZLLBMxyuav3dVh7BKQ5dAooGRkZKCwshJeXlzituroap0+fxs6dO/H9998DeLCX5OHbVhcWFop7VZRKJSorK+s8cKywsBDe3t71vq9CoRAfgPcwuVxe54Orrq6GTCZDu3btWnQXytpdyrV9GIOIiAgcPnwYWVlZbVLfvHnz0LdvXzg7Ozd7mYfHXJ9Tp05h9OjRKCoqQvv27bXm1dZoamqKpKSkBm9p3r17d4SHh2tdhfbf1FgNteLi4hAeHi4+J6f2czl16lSb/Y6OHDkSCxcuxKxZs1ql/0d/R5vzOT0qODgYd+/exeHDhwE8eNSBt7d3m9/xuF27dpDJZDA1ffDVW993mDFhfX/QCIb29+TBdqjvdahLXzoFlDFjxuDSpUta0+bOnYs+ffrg9ddfR48ePaBUKpGSkoKBAwcCeLBLMzU1Fe+88w4AwMvLC3K5HCkpKQgMDAQA5OfnIzs7u8HHl+tNjE+TTWQArKurIavnAX06C03VqXlwcDDi4+MRGhpa50F1ixYtQnR0NIKCghAXF6dTv8uXL0dYWJhOy+jLli1bYGNjg/Xr1+u0XFNj9vb2Rn5+Puzs7B53iJI2Y8YMjB8/vsXLX79+Ha6ursjMzMTTTz/92OP57LPPUFBQ0OBToaXq73//O0aPHo358+c3eXttIpIGnQKKjY0NPDw8tKZZWVmhY8eO4vTw8HBs2LABbm5ucHNzw4YNG2BpaSn+b8vOzg4hISFYtmwZOnbsCHt7eyxfvhyenp58AigAlUqFxMREbN26FRYWFgAe7Bbet28funbt2qI+ra2tG30+T2tatmxZi5ZrasxmZmb/lcNFbc3CwkL8PZCCHTt2YO7cuQa3d7F///7o3r07Pv74Y7z88sttPRwiaga9f8usWLEC4eHhWLRoEQYPHoxbt24hOTkZNjY2YputW7di6tSpCAwMxIgRI2BpaYlPP/1UfArvk2zQoEHo2rWr1hN3Dx06BJVKJe6VqiUIAjZv3owePXpAoVBgwIAB+Oqrr8T5wcHBkMlkWj8mJiY4e/bBQ6vUajVWrFgBlUoFhUIBNzc3xMbGNrisTCbDqVOnsHbtWnh6etYZu5eXF/7+978DQL3Ldu/eHQDEwxNffvklBg8eDEtLS3h7e4uHCIEHhzIa+x9/bR+1hz6aY+3atXB0dGzwsFFkZCQ8PT1hZWUFlUqFRYsWobS0VJyfm5uLSZMmoUOHDrCyskK/fv1w9OhRAA8OLYaEhMDV1RUWFhZwd3fH9u3bmzWuc+fOYcCAATA3N8fQoUO19lLGxcU1eVhj9+7deOqpp2Bubo4+ffqIT1gGID7VeODAgZDJZOLTf0eNGlXn0NbUqVMRHBzc4Pvcvn0bJ06cwOTJk7Wm37hxA1OmTIG1tTVsbW0RGBiIX3/9VavNkSNHMHjwYJibm8PBwQHTpk0T5+3duxeDBw+GjY0NlEolXnzxRfz2228NjuPOnTt44YUX4OLiAktLS3h6emLfvn31tr127Zr478mTJzfYjoik57EDyqlTp7Bt2zbxtUwmQ0REBPLz81FRUYHU1NQ6e13Mzc0RFRWFO3fu4P79+/j000+hUhnoKc6tYO7cudi9e7f4+p///CfmzZtXp93f/vY3vP3224iIiMC3336L8ePHY8KECcjPzwcAbN++Hfn5+eLPq6++is6dO8PNzQ0AMGfOHCQmJmLHjh24evUq3nvvPXGvRUPL9unTB/PmzcOVK1e0ruT69ttvkZmZKf6Be3jZH3/8Eb169cLIkSO1xr969Wps2bIFFy9ehKmpab016oMgCHj11VcRGxuLs2fPNhh82rVrhx07diA7Oxvx8fE4efIkVqxYIc5fvHgx1Go1Tp8+jUuXLuGdd94RP6+amhq4uLjgwIEDuHLlCv7+979j1apVOHDgQJPj++tf/4p3330X6enp6Ny5MyZPntzsS/E++OADrF69GuvXr8fVq1exYcMGvPnmm4iPjwcAfP311wCAEydOID8/Xyv46urs2bOwtLTEU089JU4TBAFTp07F77//jtTUVKSkpOCnn37CjBkzxDaff/45pk2bhgkTJiAzM1MMprUqKyuxbt06fPPNNzh8+DCuX7+ORYsWNTiOiooKeHl54bPPPkN2djZeeuklzJ49G//5z3+02qWkpODll18WL1v+05/+hK+//lrrlgVEJF18Fo8EzZ49GytXrsT169chk8lw7tw5JCYm4tSpU2KbsrIyREZGYv369ZgzZw6AB5djp6SkYNeuXXj77bdhZ2cnnqNx6NAhxMTEIDk5GY6Ojvjhhx9w4MABpKSkiIfWevToIfb/6LLvvfceTpw4IR5WCQgIwO7duzFkyBAAD/4X7+PjI/ZR204QBEyfPh12dnaIiYnRqnP9+vXw8XlwXtAbb7yBCRMmoKKiokVXXzWkqqoKc+bMwcWLF3Hu3Dm4uLg02PbhPQqurq5Yt24dXn75ZXGPxI0bNzB9+nRx79HDn5dcLte6FN7V1RVpaWk4cOCAeK5VQ9566y34+fkBAOLj4+Hi4oKkpKQmlwOAdevWYcuWLeIeCVdXV1y5cgUxMTEICgpCp06dAAAdO3Z87ENi169fh6Ojo9bhnRMnTuDbb79FTk6O+J+MPXv2oF+/fkhPT8eQIUOwfv16zJw5U+vzGTBggPjvh4Npjx49sG3bNgwbNgylpaX1ni/SpUsXLF++XHwdFhaGY8eO4ZNPPsHQoUPxf//3f/jqq68waNAgHD9+XLwSqEuXLlCr1SgoKEC3bt0e67MgotbHgCJBDg4OmDBhAuLj4yEIAiZMmAAHBwetNleuXEFFRQXGjRunNX3EiBH45ptvtKZlZmZizpw5iI6OxogRI1BSUoKsrCyYmJiIAaEhtcvu2rULzzzzjDh9wYIFmDdvHiIjI2FiYoKPP/4YW7ZsqbP8qlWrcP78eaSnp9c5l+LhxyTUXvVVWFjY4nNt6vPaa69BoVDgwoULdT7DR3311VfYsGEDrly5gpKSElRVVaGiogJlZWWwsrLCK6+8gpdffhnJycnw9fXF9OnTtWp477338OGHHyI3Nxfl5eWorKxs1ompw4cPF/9tb28Pd3d3XL16tcnlfvvtN+Tl5SEkJAQLFiwQp1dVVbXKycPl5eV1wuPVq1ehUqm09oD27dsX7du3x9WrVzFkyBBkZWVpje9RmZmZiIiIQFZWFn7//XfxKp4bN27U2fsKPDictmnTJuzfvx+3bt0Sb+RoZWUFAIiNjYVSqUTHjh21DhvX/v7pch8GImo7hnWm2xNk3rx5iIuLQ3x8fL2HPmq/xIcMGSKeUGptbY3o6Gj88ssvYruCggJMnjwZCxcu1Dq/oDknXtYuGxISgpCQEK15kyZNgkKhQFJSEj799FOo1WpMnz5dq83evXuxdetWJCUl1bvn4uHLzWr/l6vvO4f6+fnh1q1bOH78eKPtcnNzMX78eHh4eODgwYPIyMjArl27APxx58P58+fj559/xuzZs3Hp0iUMHjwYUVFRAIADBw7gtddew7x585CcnIysrCzMnTu3xTcLbM79P2o/qw8++ABZWVniT3Z2Ni5cuNDosu3atavzROqmDis5ODigqKhIa1pD9y96eHpjv2tlZWXw9/eHtbU19u7di/T0dBw8eBAAGvzstmzZgq1bt2LFihU4efIksrKyEBAQILbftWuX1mGoWr///jsAiHuViEjauAdFosaOHSt+4dZ3+/++fftCoVDgX//6F3r16qU1r/aeMRUVFZgyZQo8PT3rXMLt6emJmpoapKam1nv1VO2yffr0QWRkZJ35pqamCAoKwu7du6FQKDBz5kytu/qeP38e8+fPR0xMDIYNG6b7B6AnkydPxqRJkzBr1iyYmJg0eHnsxYsXUVVVhS1btoiHMOo7f0SlUmHhwoVYuHAhVq5ciQ8++ABhYWE4c+YMvL29tc6d+Omnn5o1xgsXLoh7jYqKivDDDz+gT58+TS7n6OiILl264Oeff8aLL75YbxszMzMAqPMgzk6dOonnKtXOz87OxujRoxt8v4EDB6KgoEDrHkZ9+/bFjRs3kJeXJ+5FuXLlCoqLi8WQ0L9/f3z55ZeYO3dunT6/++473L59G5s2bRKXrz1vpiFnzpzBlClT8Je//AXAg6B27dq1ekPJw7Kzs+Hi4tLknjQikgYGFIkyMTERd/PXd3WTjY0Nli9fjrVr12Lt2rVwc3ODWq3GtWvXYGlpCZVKhdDQUOTn52PPnj0oLCwE8ODL3NTUFN27d0dQUBDmzZuHHTt2YMCAAcjNzUVhYSECAwMRGhqKvLw8fPnll1pXVNjb24t/9ObPny/+UTh37pzYpqCgAM899xxmzpyJgIAA8REGJiYmbfK/1+eeew579uzB7NmzYWpqiueff75Om549e6KqqgpRUVGYNGkSzp07V+deNOHh4Rg3bhx69+6NoqIinDx5Uqy/V69e+Oijj3D8+HG4urpiz549SE9PF6+iaczatWvRsWNHODo6YvXq1XBwcGjw5nKPioiIwCuvvAJbW1uMGzcOarUaFy9eRFFREZYuXYrOnTvDwsICx44dg4uLC8zNzWFnZ4dnn30WS5cuxeeff46ePXti69atTV4RNXDgQHTq1Annzp3DxIkTAQC+vr7o378/XnzxRWzbtg1VVVVYtGgRfHx8xBNh33rrLYwZMwY9e/bEzJkzUVVVhS+++AIrVqxA165dYWZmhqioKCxcuBDZ2dlN3jOnV69eOHjwINLS0tChQwdERkaioKCgyYBy5swZrWeAEZG08RCPhNna2jZ6U6l169Zh5syZWLJkCdzc3ODu7o7169eLgSY1NRV5eXlwd3eHk5MTnJyc0KVLF/F/qNHR0Xj++eexaNEi9OnTBwsWLEBZWZm4bH5+Pvr27Ssu6+TkJD5DBADc3Nzg7e0Nd3d3DB06VJz+3Xff4ddff0V8fLzWsrUn1LaF559/HvHx8Zg9e3a9V7I8/fTTiIyMxDvvvAMPDw98/PHH2Lhxo1ab6upqLF68GE899RTGjh0Ld3d38QTahQsXYtq0aZgxYwaGDh2KO3fuNHolysM2bdqEV199FV5eXsjPz8eRI0fEENiU+fPn48MPP0RcXBw8PT3h4+ODuLg4MRiZmppix44diImJgbOzM6ZMmQLgwSHEoKAgzJkzBz4+PnB1dW107wnwIGDOmzcPH3/8sThNJpPh8OHD6NChA0aOHAlfX1/06NED+/fvF9uMGjUKn3zyCY4cOYKnn34azz77rHjFTadOnRAXF4dPPvkEffv2xaZNm5q8YeObb76JQYMGISAgAKNGjYJSqWwy0FVUVCApKanRc2GISFpkwqMHog1ASUkJ7OzsUFxcXO+zeHJycuDq6tqiq0FqampQUlICW1tbg7oZlVqtxrBhw3DmzJlGb3Cmz/oEQUCfPn0QGhra5rcQf5ihrsPmasv6fv31V/Tr1w8ZGRmtdiVMa9S3a9cu/Pvf/0ZycrJe+mup2u8nFxcXnDx5EuPHjzfKW8FrNBocPXqU9T1kUtTZVh6VfsllNQhSFel9HTb29/tRxvft/YTKzs6GRqOBtbW1+Cj31lRYWIjIyEjcunWr3nMLyDg5OjoiNjYWN27caOuh6EQul4snNBORYeA5KEaid+/eUCgU6NKlC95//31MmDChVd/P0dERDg4OeP/997Ue+kjGr/YwkSF56aWX2noIRKQjBhQjYWNjg4yMjP/a+xngkUEiIjIgPMRDREREksOAQkRERJJjtAGFhyCISGpqv5eac6dgoied0QWU2suh+LwNIpKa2u8lU1Oe/kfUFKPbSkxMTNC+fXvxzqmWlpY6/W+lpqYGlZWVqKioMNp7aBhzfYDx18j6DI8gCLh//z4KCwvRvn37eu8OTUTajC6gABAfK18bUnQhCALKy8thYWFhlLthjb0+wPhrZH2Gq3379lAqlf+VexURGTqjDCgymQxOTk7o3Llzk09ofZRGo8Hp06cxcuRIo70DojHXBxh/jazPMMnlcu45IdKBUQaUWiYmJjp/IZiYmKCqqgrm5uZG9eVYy9jrA4y/RtZHRE8C4zjAS0REREaFAYWIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCRHp4ASHR2N/v37w9bWFra2thg+fDi++OILcX5wcDBkMpnWz7Bhw7T6UKvVCAsLg4ODA6ysrDB58mTcvHlTP9UQERGRUdApoLi4uGDTpk24ePEiLl68iGeffRZTpkzB5cuXxTZjx45Ffn6++HP06FGtPsLDw5GUlITExEScPXsWpaWlmDhxIqqrq/VTERERERk8U10aT5o0Sev1+vXrER0djQsXLqBfv34AAIVCAaVSWe/yxcXFiI2NxZ49e+Dr6wsA2Lt3L1QqFU6cOIGAgICW1EBERERGpsXnoFRXVyMxMRFlZWUYPny4OP3UqVPo3LkzevfujQULFqCwsFCcl5GRAY1GA39/f3Gas7MzPDw8kJaW1tKhEBERkZHRaQ8KAFy6dAnDhw9HRUUFrK2tkZSUhL59+wIAxo0bh//5n/9Bt27dkJOTgzfffBPPPvssMjIyoFAoUFBQADMzM3To0EGrT0dHRxQUFDT4nmq1Gmq1WnxdUlICANBoNNBoNLqW0Kja/vTdr1QYe32A8dfI+gyfsdfI+uqSy2paazitQi4TAOh/HerSn0wQBEGXzisrK3Hjxg3cvXsXBw8exIcffojU1FQxpDwsPz8f3bp1Q2JiIqZNm4aEhATMnTtXK2wAgJ+fH3r27In33nuv3veMiIjAmjVr6kxPSEiApaWlLsMnIiKiNnL//n3MmjULxcXFsLW1bbStzntQzMzM0KtXLwDA4MGDkZ6eju3btyMmJqZOWycnJ3Tr1g3Xrl0DACiVSlRWVqKoqEhrL0phYSG8vb0bfM+VK1di6dKl4uuSkhKoVCr4+/s3WaCuNBoNUlJS4OfnB7lcrte+pcDY6wOMv0bWZ/iMvUbWV9eMmPOtPCr9kssEzHK5q/d1WHsEpDl0DiiPEgShzh6RWnfu3EFeXh6cnJwAAF5eXpDL5UhJSUFgYCCAB3tZsrOzsXnz5gbfQ6FQQKFQ1Jkul8tb7Ze/NfuWAmOvDzD+Glmf4TP2GlnfHzSCod127MEhKX2vQ1360imgrFq1CuPGjYNKpcK9e/eQmJiIU6dO4dixYygtLUVERASmT58OJycnXL9+HatWrYKDgwOee+45AICdnR1CQkKwbNkydOzYEfb29li+fDk8PT3Fq3qIiIiIdAoov/76K2bPno38/HzY2dmhf//+OHbsGPz8/FBeXo5Lly7ho48+wt27d+Hk5ITRo0dj//79sLGxEfvYunUrTE1NERgYiPLycowZMwZxcXEwMTHRe3FERERkmHQKKLGxsQ3Os7CwwPHjx5vsw9zcHFFRUYiKitLlrYmIiOgJYmgHxYiIiOgJwIBCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSo1NAiY6ORv/+/WFrawtbW1sMHz4cX3zxhThfEARERETA2dkZFhYWGDVqFC5fvqzVh1qtRlhYGBwcHGBlZYXJkyfj5s2b+qmGiIiIjIJOAcXFxQWbNm3CxYsXcfHiRTz77LOYMmWKGEI2b96MyMhI7Ny5E+np6VAqlfDz88O9e/fEPsLDw5GUlITExEScPXsWpaWlmDhxIqqrq/VbGRERERksnQLKpEmTMH78ePTu3Ru9e/fG+vXrYW1tjQsXLkAQBGzbtg2rV6/GtGnT4OHhgfj4eNy/fx8JCQkAgOLiYsTGxmLLli3w9fXFwIEDsXfvXly6dAknTpxolQKJiIjI8LT4HJTq6mokJiairKwMw4cPR05ODgoKCuDv7y+2USgU8PHxQVpaGgAgIyMDGo1Gq42zszM8PDzENkRERESmui5w6dIlDB8+HBUVFbC2tkZSUhL69u0rBgxHR0et9o6OjsjNzQUAFBQUwMzMDB06dKjTpqCgoMH3VKvVUKvV4uuSkhIAgEajgUaj0bWERtX2p+9+pcLY6wOMv0bWZ/iMvUbWV5dcVtNaw2kVcpkAQP/rUJf+dA4o7u7uyMrKwt27d3Hw4EEEBQUhNTVVnC+TybTaC4JQZ9qjmmqzceNGrFmzps705ORkWFpa6lhB86SkpLRKv1Jh7PUBxl8j6zN8xl4j6/tDkKoVB9KK9L0O79+/3+y2OgcUMzMz9OrVCwAwePBgpKenY/v27Xj99dcBPNhL4uTkJLYvLCwU96oolUpUVlaiqKhIay9KYWEhvL29G3zPlStXYunSpeLrkpISqFQq+Pv7w9bWVtcSGqXRaJCSkgI/Pz/I5XK99i0Fxl4fYPw1sj7DZ+w1sr66ZsScb+VR6ZdcJmCWy129r8PaIyDNoXNAeZQgCFCr1XB1dYVSqURKSgoGDhwIAKisrERqaireeecdAICXlxfkcjlSUlIQGBgIAMjPz0d2djY2b97c4HsoFAooFIo60+Vyeav98rdm31Jg7PUBxl8j6zN8xl4j6/uDRjC02449OCSl73WoS186BZRVq1Zh3LhxUKlUuHfvHhITE3Hq1CkcO3YMMpkM4eHh2LBhA9zc3ODm5oYNGzbA0tISs2bNAgDY2dkhJCQEy5YtQ8eOHWFvb4/ly5fD09MTvr6+ulVJRERERkungPLrr79i9uzZyM/Ph52dHfr3749jx47Bz88PALBixQqUl5dj0aJFKCoqwtChQ5GcnAwbGxuxj61bt8LU1BSBgYEoLy/HmDFjEBcXBxMTE/1WRkRERAZLp4ASGxvb6HyZTIaIiAhEREQ02Mbc3BxRUVGIiorS5a2JiIjoCWJoB8WIiIjoCcCAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJKjU0DZuHEjhgwZAhsbG3Tu3BlTp07F999/r9UmODgYMplM62fYsGFabdRqNcLCwuDg4AArKytMnjwZN2/efPxqiIiIyCjoFFBSU1OxePFiXLhwASkpKaiqqoK/vz/Kysq02o0dOxb5+fniz9GjR7Xmh4eHIykpCYmJiTh79ixKS0sxceJEVFdXP35FREREZPBMdWl87Ngxrde7d+9G586dkZGRgZEjR4rTFQoFlEplvX0UFxcjNjYWe/bsga+vLwBg7969UKlUOHHiBAICAnStgYiIiIyMTgHlUcXFxQAAe3t7remnTp1C586d0b59e/j4+GD9+vXo3LkzACAjIwMajQb+/v5ie2dnZ3h4eCAtLa3egKJWq6FWq8XXJSUlAACNRgONRvM4JdRR25+++5UKY68PMP4aWZ/hM/YaWV9dcllNaw2nVchlAgD9r0Nd+pMJgiC05E0EQcCUKVNQVFSEM2fOiNP3798Pa2trdOvWDTk5OXjzzTdRVVWFjIwMKBQKJCQkYO7cuVqBAwD8/f3h6uqKmJiYOu8VERGBNWvW1JmekJAAS0vLlgyfiIiI/svu37+PWbNmobi4GLa2to22bfEelCVLluDbb7/F2bNntabPmDFD/LeHhwcGDx6Mbt264fPPP8e0adMa7E8QBMhksnrnrVy5EkuXLhVfl5SUQKVSwd/fv8kCdaXRaJCSkgI/Pz/I5XK99i0Fxl4fYPw1sj7DZ+w1sr66ZsScb+VR6ZdcJmCWy129r8PaIyDN0aKAEhYWhiNHjuD06dNwcXFptK2TkxO6deuGa9euAQCUSiUqKytRVFSEDh06iO0KCwvh7e1dbx8KhQIKhaLOdLlc3mq//K3ZtxQYe32A8dfI+gyfsdfI+v6gEQztrh4PDknpex3q0pdOn5ggCFiyZAkOHTqEkydPwtXVtcll7ty5g7y8PDg5OQEAvLy8IJfLkZKSIrbJz89HdnZ2gwGFiIiIniw67UFZvHgxEhIS8O9//xs2NjYoKCgAANjZ2cHCwgKlpaWIiIjA9OnT4eTkhOvXr2PVqlVwcHDAc889J7YNCQnBsmXL0LFjR9jb22P58uXw9PQUr+ohIiKiJ5tOASU6OhoAMGrUKK3pu3fvRnBwMExMTHDp0iV89NFHuHv3LpycnDB69Gjs378fNjY2YvutW7fC1NQUgYGBKC8vx5gxYxAXFwcTE5PHr4iIiIgMnk4BpakLfiwsLHD8+PEm+zE3N0dUVBSioqJ0eXsiIiJ6QhjaWTtERET0BGBAISIiIslhQCEiIiLJYUAhIiIiyWFAISIiIslhQCEiIiLJYUAhIiIiyWFAISIiIslhQCEiIiLJYUAhIiIiyWFAISIiIslhQCEiIiLJYUAhIiIiyWFAISIiIslhQCEiIiLJYUAhIiIiyWFAISIiIslhQCEiIiLJYUAhIiIiyWFAISIiIslhQCEiIiLJYUAhIiIiyWFAISIiIslhQCEiIiLJYUAhIiIiyWFAISIiIslhQCEiIiLJYUAhIiIiyWFAISIiIslhQCEiIiLJYUAhIiIiydEpoGzcuBFDhgyBjY0NOnfujKlTp+L777/XaiMIAiIiIuDs7AwLCwuMGjUKly9f1mqjVqsRFhYGBwcHWFlZYfLkybh58+bjV0NERERGQaeAkpqaisWLF+PChQtISUlBVVUV/P39UVZWJrbZvHkzIiMjsXPnTqSnp0OpVMLPzw/37t0T24SHhyMpKQmJiYk4e/YsSktLMXHiRFRXV+uvMiIiIjJYpro0PnbsmNbr3bt3o3PnzsjIyMDIkSMhCAK2bduG1atXY9q0aQCA+Ph4ODo6IiEhAaGhoSguLkZsbCz27NkDX19fAMDevXuhUqlw4sQJBAQE6Kk0IiIiMlQ6BZRHFRcXAwDs7e0BADk5OSgoKIC/v7/YRqFQwMfHB2lpaQgNDUVGRgY0Go1WG2dnZ3h4eCAtLa3egKJWq6FWq8XXJSUlAACNRgONRvM4JdRR25+++5UKY68PMP4aWZ/hM/YaWV9dcllNaw2nVchlAgD9r0Nd+mtxQBEEAUuXLsUzzzwDDw8PAEBBQQEAwNHRUauto6MjcnNzxTZmZmbo0KFDnTa1yz9q48aNWLNmTZ3pycnJsLS0bGkJjUpJSWmVfqXC2OsDjL9G1mf4jL1G1veHIFUrDqQV6Xsd3r9/v9ltWxxQlixZgm+//RZnz56tM08mk2m9FgShzrRHNdZm5cqVWLp0qfi6pKQEKpUK/v7+sLW1bcHoG6bRaJCSkgI/Pz/I5XK99i0Fxl4fYPw1sj7DZ+w1sr66ZsScb+VR6ZdcJmCWy129r8PaIyDN0aKAEhYWhiNHjuD06dNwcXERpyuVSgAP9pI4OTmJ0wsLC8W9KkqlEpWVlSgqKtLai1JYWAhvb+9630+hUEChUNSZLpfLW+2XvzX7lgJjrw8w/hpZn+Ez9hpZ3x80gqHd1ePBISl9r0Nd+tLpExMEAUuWLMGhQ4dw8uRJuLq6as13dXWFUqnU2iVUWVmJ1NRUMXx4eXlBLpdrtcnPz0d2dnaDAYWIiIieLDrtQVm8eDESEhLw73//GzY2NuI5I3Z2drCwsIBMJkN4eDg2bNgANzc3uLm5YcOGDbC0tMSsWbPEtiEhIVi2bBk6duwIe3t7LF++HJ6enuJVPURERPRk0ymgREdHAwBGjRqlNX337t0IDg4GAKxYsQLl5eVYtGgRioqKMHToUCQnJ8PGxkZsv3XrVpiamiIwMBDl5eUYM2YM4uLiYGJi8njVEBERkVHQKaAIgtBkG5lMhoiICERERDTYxtzcHFFRUYiKitLl7YmIiOgJYWhn7RAREdETgAGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkR+eAcvr0aUyaNAnOzs6QyWQ4fPiw1vzg4GDIZDKtn2HDhmm1UavVCAsLg4ODA6ysrDB58mTcvHnzsQohIiIi46FzQCkrK8OAAQOwc+fOBtuMHTsW+fn54s/Ro0e15oeHhyMpKQmJiYk4e/YsSktLMXHiRFRXV+teARERERkdU10XGDduHMaNG9doG4VCAaVSWe+84uJixMbGYs+ePfD19QUA7N27FyqVCidOnEBAQICuQyIiIiIjo3NAaY5Tp06hc+fOaN++PXx8fLB+/Xp07twZAJCRkQGNRgN/f3+xvbOzMzw8PJCWllZvQFGr1VCr1eLrkpISAIBGo4FGo9Hr2Gv703e/UmHs9QHGXyPrM3zGXiPrq0suq2mt4bQKuUwAoP91qEt/MkEQhJa+kUwmQ1JSEqZOnSpO279/P6ytrdGtWzfk5OTgzTffRFVVFTIyMqBQKJCQkIC5c+dqBQ4A8Pf3h6urK2JiYuq8T0REBNasWVNnekJCAiwtLVs6fCIiIvovun//PmbNmoXi4mLY2to22lbve1BmzJgh/tvDwwODBw9Gt27d8Pnnn2PatGkNLicIAmQyWb3zVq5ciaVLl4qvS0pKoFKp4O/v32SButJoNEhJSYGfnx/kcrle+5YCY68PMP4aWZ/hM/YaWV9dM2LOt/Ko9EsuEzDL5a7e12HtEZDmaJVDPA9zcnJCt27dcO3aNQCAUqlEZWUlioqK0KFDB7FdYWEhvL296+1DoVBAoVDUmS6Xy1vtl781+5YCY68PMP4aWZ/hM/YaWd8fNIKh3dXjwSEpfa9DXfpq9YBy584d5OXlwcnJCQDg5eUFuVyOlJQUBAYGAgDy8/ORnZ2NzZs3t/ZwiMhAzIg5b1Bf6p+GPdPWQyAyKjoHlNLSUvz444/i65ycHGRlZcHe3h729vaIiIjA9OnT4eTkhOvXr2PVqlVwcHDAc889BwCws7NDSEgIli1bho4dO8Le3h7Lly+Hp6eneFUPERERPdl0DigXL17E6NGjxde154YEBQUhOjoaly5dwkcffYS7d+/CyckJo0ePxv79+2FjYyMus3XrVpiamiIwMBDl5eUYM2YM4uLiYGJiooeSiIiIyNDpHFBGjRqFxi78OX78eJN9mJubIyoqClFRUbq+PRERET0BDOcALxERET0xGFCIiIhIchhQiIiISHIYUIiIiEhyGFCIiIhIchhQiIiISHIYUIiIiEhyGFCIiIhIchhQiIiISHIYUIiIiEhyGFCIiIhIchhQiIiISHIYUIiIiEhyGFCIiIhIchhQiIiISHIYUIiIiEhyGFCIiIhIchhQiIiISHIYUIiIiEhyGFCIiIhIckzbegBSNSPmPDSC4eS3T8OeaeshEBER6Y3h/AUmIiKiJwYDChEREUkOAwoRERFJDgMKERERSQ4DChEREUkOAwoRERFJDgMKERERSQ4DChEREUkOAwoRERFJDgMKERERSY7OAeX06dOYNGkSnJ2dIZPJcPjwYa35giAgIiICzs7OsLCwwKhRo3D58mWtNmq1GmFhYXBwcICVlRUmT56MmzdvPlYhREREZDx0DihlZWUYMGAAdu7cWe/8zZs3IzIyEjt37kR6ejqUSiX8/Pxw7949sU14eDiSkpKQmJiIs2fPorS0FBMnTkR1dXXLKyEiIiKjofPDAseNG4dx48bVO08QBGzbtg2rV6/GtGnTAADx8fFwdHREQkICQkNDUVxcjNjYWOzZswe+vr4AgL1790KlUuHEiRMICAh4jHKIiIjIGOj1acY5OTkoKCiAv7+/OE2hUMDHxwdpaWkIDQ1FRkYGNBqNVhtnZ2d4eHggLS2t3oCiVquhVqvF1yUlJQAAjUYDjUajzxLE/uQyAUCNXvtuTc39HGrb6ftzkxJjr/FJqc9Yt8GH2xr7OmR9f5DLDOd3Gajd/vS/DnXpT68BpaCgAADg6OioNd3R0RG5ubliGzMzM3To0KFOm9rlH7Vx40asWbOmzvTk5GRYWlrqY+h1zHK52yr9tpajR4/q1D4lJaWVRiIdxl6jsddn7NsgYPzrkPX9IUjVigNpRfpeh/fv3292W70GlFoymUzrtSAIdaY9qrE2K1euxNKlS8XXJSUlUKlU8Pf3h62t7eMP+CEajQYpKSlIuNkeGqHxMUvJ/tDhzWpXW5+fnx/kcnkrj6ptGHuNT0p9xroNAk/OOmR9f5gRc76VR6VfcpmAWS539b4Oa4+ANIdeA4pSqQTwYC+Jk5OTOL2wsFDcq6JUKlFZWYmioiKtvSiFhYXw9vaut1+FQgGFQlFnulwub7Vffo0gg0YwnKuwdf0cWvOzkwpjr9HY6zP2bbB2GWNeh6zvD4b0u/zAg0NS+l6HuvSl10/M1dUVSqVSa5dQZWUlUlNTxfDh5eUFuVyu1SY/Px/Z2dkNBhQiIiJ6sui8B6W0tBQ//vij+DonJwdZWVmwt7dH165dER4ejg0bNsDNzQ1ubm7YsGEDLC0tMWvWLACAnZ0dQkJCsGzZMnTs2BH29vZYvnw5PD09xat6iIiI6Mmmc0C5ePEiRo8eLb6uPTckKCgIcXFxWLFiBcrLy7Fo0SIUFRVh6NChSE5Oho2NjbjM1q1bYWpqisDAQJSXl2PMmDGIi4uDiYmJHkoiIiIiQ6dzQBk1ahQEQWhwvkwmQ0REBCIiIhpsY25ujqioKERFRen69kRERPQEMLSzdoiIiOgJwIBCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREksOAQkRERJLDgEJERESSw4BCREREkmPa1gMgIiIydpF3X23rIeikup0Zvle90aZj4B4UIiIikhwGFCIiIpIcBhQiIiKSHAYUIiIikhwGFCIiIpIcBhQiIiKSHAYUIiIikhwGFCIiIpIcBhQiIiKSHAYUIiIikhwGFCIiIpIcPounARuKX4dJTWVbD0MHGW09ACIiIr3hHhQiIiKSHAYUIiIikhwGFCIiIpIcBhQiIiKSHL0HlIiICMhkMq0fpVIpzhcEAREREXB2doaFhQVGjRqFy5cv63sYREREZMBaZQ9Kv379kJ+fL/5cunRJnLd582ZERkZi586dSE9Ph1KphJ+fH+7du9caQyEiIiID1CoBxdTUFEqlUvzp1KkTgAd7T7Zt24bVq1dj2rRp8PDwQHx8PO7fv4+EhITWGAoREREZoFa5D8q1a9fg7OwMhUKBoUOHYsOGDejRowdycnJQUFAAf39/sa1CoYCPjw/S0tIQGhpab39qtRpqtVp8XVJSAgDQaDTQaDR6HXttf9XtzPTab2tr7udQ207fn5uUGHuNT0p9cpkAoKZtB6MDXdbHk7IOWd8fDO1vSu14W+tvbHPIBEEQ9PnmX3zxBe7fv4/evXvj119/xdtvv43vvvsOly9fxvfff48RI0bg1q1bcHZ2Fpd56aWXkJubi+PHj9fbZ0REBNasWVNnekJCAiwtLfU5fCIiImol9+/fx6xZs1BcXAxbW9tG2+o9oDyqrKwMPXv2xIoVKzBs2DCMGDECv/zyC5ycnMQ2CxYsQF5eHo4dO1ZvH/XtQVGpVLh9+3aTBepKo9EgJSUFva5EGtSdZHuuON2sdrX1+fn5QS6Xt/Ko2oax1/ik1Jdwsz00gqyth9Ns+0OHN7vtk7IOWd8ffto8spVHpV/V7czwY9+lel+HJSUlcHBwaFZAafVb3VtZWcHT0xPXrl3D1KlTAQAFBQVaAaWwsBCOjo4N9qFQKKBQKOpMl8vlrfbLb1JTaVABRdfPoTU/O6kw9hqNvT6NIINGMJw7IbRkXRj7OmR9fzCkvycP0/c61KWvVt/61Wo1rl69CicnJ7i6ukKpVCIlJUWcX1lZidTUVHh7e7f2UIiIiMhA6H0PyvLlyzFp0iR07doVhYWFePvtt1FSUoKgoCDIZDKEh4djw4YNcHNzg5ubGzZs2ABLS0vMmjVL30MhIiIiA6X3gHLz5k288MILuH37Njp16oRhw4bhwoUL6NatGwBgxYoVKC8vx6JFi1BUVIShQ4ciOTkZNjY2+h4KERERGSi9B5TExMRG58tkMkRERCAiIkLfb01ERERGwnDOQCMiIqInBgMKERERSQ4DChEREUkOAwoRERFJDgMKERERSQ4DChEREUkOAwoRERFJDgMKERERSQ4DChEREUkOAwoRERFJDgMKERERSQ4DChEREUkOAwoRERFJDgMKERERSY5pWw+AiKg+G4pfh0lNZVsPQwcZbT0AIqPCPShEREQkOQwoREREJDkMKERERCQ5DChEREQkOQwoREREJDkMKERERCQ5DChEREQkOQwoREREJDkMKERERCQ5DChEREQkOQwoREREJDkMKERERCQ5DChEREQkOQwoREREJDkMKERERCQ5DChEREQkOW0aUP73f/8Xrq6uMDc3h5eXF86cOdOWwyEiIiKJaLOAsn//foSHh2P16tXIzMzEn//8Z4wbNw43btxoqyERERGRRLRZQImMjERISAjmz5+Pp556Ctu2bYNKpUJ0dHRbDYmIiIgkwrQt3rSyshIZGRl44403tKb7+/sjLS2tTnu1Wg21Wi2+Li4uBgD8/vvv0Gg0eh2bRqPB/fv3UVzZDiY1hnOKzp07d5rVrra+O3fuQC6Xt/Ko2oax1/ik1Ges2yDw5KxD1veH4krD+V0GgOp27VplHd67dw8AIAhCk23bJKDcvn0b1dXVcHR01Jru6OiIgoKCOu03btyINWvW1Jnu6uraamM0OG87tPUIiJ5s3AbJ6NTdYaAv9+7dg52dXaNt2iSg1JLJZFqvBUGoMw0AVq5ciaVLl4qva2pq8Pvvv6Njx471tn8cJSUlUKlUyMvLg62trV77lgJjrw8w/hpZn+Ez9hpZn+FrrRoFQcC9e/fg7OzcZNs2CSgODg4wMTGps7eksLCwzl4VAFAoFFAoFFrT2rdv35pDhK2trdH+4gHGXx9g/DWyPsNn7DWyPsPXGjU2teekVpscFDMzM4OXlxdSUlK0pqekpMDb27sthkREREQS0maHeJYuXYrZs2dj8ODBGD58ON5//33cuHEDCxcubKshERERkUS0WUCZMWMG7ty5g7Vr1yI/Px8eHh44evQounXr1lZDAvDgcNJbb71V55CSsTD2+gDjr5H1GT5jr5H1GT4p1CgTmnOtDxEREdF/kWFdmE1ERERPBAYUIiIikhwGFCIiIpIcBhQiIiKSHKMOKKdPn8akSZPg7OwMmUyGw4cPN7lMamoqvLy8YG5ujh49euC9996r0+bgwYPo27cvFAoF+vbti6SkpFYYfdN0re/QoUPw8/NDp06dYGtri+HDh+P48eNabeLi4iCTyer8VFRUtGIlDdO1xlOnTtU7/u+++06rnaGuw+Dg4Hrr69evn9hGSutw48aNGDJkCGxsbNC5c2dMnToV33//fZPLGcp22JL6DG07bEmNhrQdtqQ+Q9oOo6Oj0b9/f/GGa8OHD8cXX3zR6DJS2f6MOqCUlZVhwIAB2LlzZ7Pa5+TkYPz48fjzn/+MzMxMrFq1Cq+88goOHjwotjl//jxmzJiB2bNn45tvvsHs2bMRGBiI//znP61VRoN0re/06dPw8/PD0aNHkZGRgdGjR2PSpEnIzMzUamdra4v8/HytH3Nz89YooUm61ljr+++/1xq/m5ubOM+Q1+H27du16srLy4O9vT3+53/+R6udVNZhamoqFi9ejAsXLiAlJQVVVVXw9/dHWVlZg8sY0nbYkvoMbTtsSY21DGE7bEl9hrQduri4YNOmTbh48SIuXryIZ599FlOmTMHly5frbS+p7U94QgAQkpKSGm2zYsUKoU+fPlrTQkNDhWHDhomvAwMDhbFjx2q1CQgIEGbOnKm3sbZEc+qrT9++fYU1a9aIr3fv3i3Y2dnpb2B61Jwav/rqKwGAUFRU1GAbY1qHSUlJgkwmE65fvy5Ok/I6LCwsFAAIqampDbYx5O2wOfXVx5C2w+bUaMjbYUvWoaFthx06dBA+/PDDeudJafsz6j0oujp//jz8/f21pgUEBODixYvQaDSNtklLa72nPraWmpoa3Lt3D/b29lrTS0tL0a1bN7i4uGDixIl1/mdnCAYOHAgnJyeMGTMGX331ldY8Y1qHsbGx8PX1rXODQ6muw+LiYgCo8zv3MEPeDptT36MMbTvUpUZD3A5bsg4NZTusrq5GYmIiysrKMHz48HrbSGn7Y0B5SEFBQZ2HFTo6OqKqqgq3b99utM2jDz40BFu2bEFZWRkCAwPFaX369EFcXByOHDmCffv2wdzcHCNGjMC1a9facKTN5+TkhPfffx8HDx7EoUOH4O7ujjFjxuD06dNiG2NZh/n5+fjiiy8wf/58relSXYeCIGDp0qV45pln4OHh0WA7Q90Om1vfowxpO2xujYa6HbZkHRrCdnjp0iVYW1tDoVBg4cKFSEpKQt++fettK6Xtr81udS9VMplM67Xw/2+0+/D0+to8Ok3q9u3bh4iICPz73/9G586dxenDhg3DsGHDxNcjRozAoEGDEBUVhR07drTFUHXi7u4Od3d38fXw4cORl5eHd999FyNHjhSnG8M6jIuLQ/v27TF16lSt6VJdh0uWLMG3336Ls2fPNtnWELdDXeqrZWjbYXNrNNTtsCXr0BC2Q3d3d2RlZeHu3bs4ePAggoKCkJqa2mBIkcr2xz0oD1EqlXUSYGFhIUxNTdGxY8dG2zyaJqVs//79CAkJwYEDB+Dr69to23bt2mHIkCFt/j+3xzFs2DCt8RvDOhQEAf/85z8xe/ZsmJmZNdpWCuswLCwMR44cwVdffQUXF5dG2xridqhLfbUMbTtsSY0Pk/p22JL6DGU7NDMzQ69evTB48GBs3LgRAwYMwPbt2+ttK6XtjwHlIcOHD0dKSorWtOTkZAwePBhyubzRNt7e3v+1cT6Offv2ITg4GAkJCZgwYUKT7QVBQFZWFpycnP4Lo2sdmZmZWuM39HUIPLjy4Mcff0RISEiTbdtyHQqCgCVLluDQoUM4efIkXF1dm1zGkLbDltQHGNZ22NIaHyXV7fBx6jOU7bC+sajV6nrnSWr70+sptxJz7949ITMzU8jMzBQACJGRkUJmZqaQm5srCIIgvPHGG8Ls2bPF9j///LNgaWkpvPbaa8KVK1eE2NhYQS6XC//617/ENufOnRNMTEyETZs2CVevXhU2bdokmJqaChcuXJB8fQkJCYKpqamwa9cuIT8/X/y5e/eu2CYiIkI4duyY8NNPPwmZmZnC3LlzBVNTU+E///nPf70+QdC9xq1btwpJSUnCDz/8IGRnZwtvvPGGAEA4ePCg2MaQ12Gtv/zlL8LQoUPr7VNK6/Dll18W7OzshFOnTmn9zt2/f19sY8jbYUvqM7TtsCU1GtJ22JL6ahnCdrhy5Urh9OnTQk5OjvDtt98Kq1atEtq1ayckJycLgiDt7c+oA0rtpW6P/gQFBQmCIAhBQUGCj4+P1jKnTp0SBg4cKJiZmQndu3cXoqOj6/T7ySefCO7u7oJcLhf69OmjtdH9N+lan4+PT6PtBUEQwsPDha5duwpmZmZCp06dBH9/fyEtLe2/W9hDdK3xnXfeEXr27CmYm5sLHTp0EJ555hnh888/r9Ovoa5DQRCEu3fvChYWFsL7779fb59SWof11QZA2L17t9jGkLfDltRnaNthS2o0pO2wpb+jhrIdzps3T+jWrZs4jjFjxojhRBCkvf3JBOH/n/1CREREJBE8B4WIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCSHAYWIiIgkhwGFiIiIJIcBhYiIiCTn/wFqrgR/37IweQAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" \n",
" Liczebność\n",
"ocalal \n",
"Nie 682\n",
"Tak 161\n",
" \n",
" Liczebność\n",
"Czy ocalał Klasa biletu \n",
"Nie 1.0 118\n",
" 2.0 146\n",
" 3.0 418\n",
"Tak 1.0 61\n",
" 2.0 25\n",
" 3.0 75\n"
]
},
{
"data": {
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# No i chciałbym przeprowadzić analizę samych mężczyzn (ich przeżycie, albo zatonięcie\n",
"# w zależności od posiadanej klasy biletu. Jak wiadomo - ich ocalało jedynie 161 osób, \n",
"# a powyższy wykres histogramu przeżywalności w zależności od klasy biletu mógł nie \n",
"# odzwierciedlać dobrze rzeczywistości, bo najwyraźniej za główny cel postawiono sobie\n",
"# ratowanie kobiet...\n",
"\n",
"df4 = df3[df3['plec'] == 'M'][['ocalal', 'klasa_biletu', 'plec']]\n",
"for survived in [0, 1]:\n",
" add_to_title = ' (ocalał)' if survived else ' (nie ocalał)'\n",
" df5 = df4[df4['ocalal'] == survived]['klasa_biletu'].copy()\n",
" df5.name = 'Mężczyźni i klasa biletu' + add_to_title\n",
" df5.hist(legend=True, alpha=0.8)\n",
"plt.show()\n",
"plt.clf()\n",
"\n",
"stat = df4.copy()\n",
"stat['ocalal'].replace({0: 'Nie', 1: 'Tak'}, inplace=True)\n",
"\n",
"stat1 = stat.groupby(['ocalal']).agg({'plec': ['count']})\n",
"stat1 = stat1.rename(columns={'count': 'Liczebność'}, level=1)\n",
"stat1 = stat1.rename(columns={'plec': ''}, level=0)\n",
"print(stat1)\n",
"\n",
"stat2 = stat.groupby(['ocalal', 'klasa_biletu']).agg({'plec': ['count']})\n",
"stat2.axes[0].names = ['Czy ocalał', 'Klasa biletu']\n",
"stat2 = stat2.rename(columns={'count': 'Liczebność'}, level=1)\n",
"stat2 = stat2.rename(columns={'plec': ''}, level=0)\n",
"print(stat2)\n"
]
},
{
"cell_type": "markdown",
"id": "0c701aa3-2a02-4751-a815-c38a761abbd7",
"metadata": {},
"source": [
"Z tych danych wynika ogromna dysproporcja pomiędzy uratowanymi z klasą 1 pomiędzy uratowanymi z klasą 3 w skali wszystkich mężczyzn."
]
},
{
"cell_type": "code",
"execution_count": 179,
"id": "dada5c91-9378-4077-962d-46ab82833dfa",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" liczba ocalałych\n",
"plec \n",
"Kobiety 21\n",
"Mężczyźni 2\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcgAAAGFCAYAAAB5Z2NYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABD7ElEQVR4nO3deViU5eI+8HuGZQAHEARkkcUdUVBRyyVzy8QoTf1mpuaClNUhPS6VeTIRj9XRXDJNKxPNPZeyOlmaiQvqT8Q9AUFEEUE2QWRnZn5/mHOamFyY5Znl/lyXV/TO+75zA8rNuz2PRKVSqUBEREQapKIDEBERmSIWJBERkRYsSCIiIi1YkERERFqwIImIiLRgQRIREWnBgiQiItKCBUlERKQFC5KIiEgLFiQREZEWLEgiIiItWJBERERasCCJiIi0YEESERFpYSs6ABFZFoVCgdraWtExSM/s7e0hlVrXMRULkoj0QqVSIS8vDyUlJaKjkAFIpVI0b94c9vb2oqMYjYQTJhORPuTm5qKkpAReXl5wcnKCRCIRHYn0RKlU4saNG7Czs0NAQIDVfG95BElEOlMoFOpybNKkieg4ZACenp64ceMG6urqYGdnJzqOUVjXCWUiMoh71xydnJwEJyFDuXdqVaFQCE5iPCxIItIbazn1Zo2s8XvLgiQiItKCBUlEpIOgoCAsW7bsvutIJBJ89913RslD+sObdIjIoIJm/deo75f1UeQjrT9hwgSUlJRoFNiOHTswduxYxMXF4e2339Y5U25uLtzc3HTKRMbHgiQi+pM1a9bgH//4B1auXIno6Gi97NPb21sv+yHj4ilWIqI/LFy4EDExMdi8ebO6HHfu3In27dtDJpMhKCgIixcvrrddWVkZRo8eDblcDl9fX3z66acar//1FGtOTg5efPFFuLm5oUmTJhg6dCiysrIAALGxsVi/fj12794NiUQCiUSChIQE9O/fHzExMRr7LSoqgkwmw2+//abfLwQBYEESEQEAZs2ahfnz5+PHH3/EiBEjAADJyckYOXIkRo0ahfPnzyM2NhZz5szBunXrNLZdtGgRwsLCcOrUKbz77ruYNm0a9u3bp/V9Kioq0K9fP8jlchw6dAhHjhyBXC5HREQEampqMHPmTIwcORIRERHIzc1Fbm4uevbsiejoaGzevBnV1dXqfW3atAm+vr7o16+fwb4u1oynWInI6u3Zswe7d+/G/v370b9/f/XyJUuWYMCAAZgzZw4AoE2bNrh48SIWLVqECRMmqNfr1asXZs2apV4nMTERS5cuxcCBA+u919atWyGVSrFmzRr1oxPx8fFo3LgxEhIS8PTTT8PR0RHV1dUap2ZHjBiBN998E7t378bIkSPV202YMMEqH8EwBh5BEpHVCwsLQ1BQEN5//32UlZWpl6ekpKBXr14a6/bq1Qvp6ekaD8z36NFDY50ePXogJSVF63slJycjIyMDzs7OkMvlkMvlcHd3R1VVFS5fvvy3GWUyGcaOHYu1a9cCAM6cOYOzZ89qFDXpF48gicjq+fn5YefOnejXrx8iIiLw888/w9nZGSqVqt7R2cMOX/13R3VKpRJdunTBpk2b6r3m6el5331GR0ejU6dOuH79OtauXYsBAwYgMDDwofLQo+MRJBERgICAABw8eBD5+fl4+umncfv2bYSEhODIkSMa6x09ehRt2rSBjY2Netnx48c11jl+/DiCg4O1vk94eDjS09Ph5eWFVq1aafxxdXUFcHdYN21DuoWGhqJr16748ssvsXnzZkRFRen6adN9sCCJiP7QrFkzJCQkoKioCE8//TReffVV7N+/H/Pnz8elS5ewfv16rFixAjNnztTYLjExEQsXLsSlS5ewcuVKbN++HVOnTtX6HmPGjIGHhweGDh2Kw4cP48qVKzh48CCmTp2K69evA7g7+MC5c+eQlpaGwsJCjfk1o6Oj8dFHH0GhUGDYsGGG+2IQC5KI6M/8/Pxw8OBBlJSU4K233sI333yDrVu3okOHDnj//fcRFxdX77rfjBkzkJycjM6dO2P+/PlYvHgxBg0apHX/Tk5OOHToEAICAjB8+HC0a9cOUVFRqKyshIuLCwDglVdeQdu2bdG1a1d4enoiMTFRvf1LL70EW1tbjB49Gg4ODgb7OhDngyQiPaiqqsKVK1fQvHlz/tA2sOzsbAQFBSEpKQnh4eFGe19r/B7zJh0iIjNQW1uL3NxczJo1C927dzdqOVornmIlIjIDiYmJCAwMRHJyMlavXi06jlXgESQRkRno27fvQz9iQvrBI0giIiItWJBERERasCCJiIi0YEESERFpwYIkIiLSggVJRESkBQuSiMjClJSUYN68ecjLyxMdxayxIImI9Cw2NhadOnUS9v4TJkyoN+Hyg4jObIo4FisR6ey+43TGuho3TGzpI60+YcIErF+/HpMnT643Qs0bb7yBVatWYfz48Vi3bt1D7/POnTuorq5GkyZNHimLPixevBhnzpzB119//bdzUmrzoMwci5WI7kupVOFmWRXuVNWhokaBihoFKmv/9LF6mQKVNXXqZZW1CthIJWhkbwsnmY3mf+1t0Ej2l//+sdytkT3sbHiix9D8/f2xdetWLF26FI6OjgDuFsKWLVsQEBDwyPuTy+WQy+X6jvlQZsyY0aDtRGY2VSxIor8oq6rFteIKZBdX4GpRBa4VV6j//0ZJFWoUSqNlkUqApi4O8GvsiGZujvBzc4RfYyf4uzsiqEkj+DV2hFT68EcJpF14eDgyMzOxa9cujBkzBgCwa9cu+Pv7o0WLFur1VCoVFi1ahNWrVyMnJwfBwcFYtmwZ+vXrB+B/R6N/deDAAfTt2xfV1dWYM2cOtmzZgvz8fAQEBGDWrFmYNGnSfbc9dOgQtm/fjvPnz2u81qVLF0RGRiIuLk7r0WJgYCCysrKQkJCAfv364ddff8U777yDixcvolOnToiPj0fbtm0B3D3F+t133+HMmTMN/jpaGhYkWaU6hRJpN8vwe85tZBWVqwvwWnEFblXUPngHRqJUAbmlVcgtrcLJq7fqvS6zlaK5RyO08GyEFh5ytPBshGBvFwR7O7M4H9HEiRMRHx+vLsi1a9ciKioKCQkJ6nXee+89fPrpp1ixYgUef/xxrFu3DpGRkbh8+TJ8fHzwySef4KOPPlKv/9FHH2HLli0IDg4GAIwbNw7Hjh3D8uXL0bFjR1y5cgWFhYUAcN9tW7VqhXnz5iEpKQndunUDAJw7dw6nT5/G9u3bAQC5ubnqbcvLyxEREYEePXpofI7/+te/sHjxYnh6euK1115DVFSUxlyTpIkFSVbhalE5zl4vxdnsEpzNLsHvN26jslYhOpbOquuUSM0rQ2pemcZyZ5ktOgU0RtdAd3QNckMn/8ZoJOM/9/t5+eWX8e677yIrKwsSiQSJiYnYunWruiDLy8uxZMkSLFiwAOPGjQMAfPjhh9i3bx9WrlyJf//733B1dYWr691rrrt27cLnn3+OX3/9Fd7e3rh06RK++eYb7Nu3D0899RQAaByd/nXb1atXq7cFgEGDBiE+Pl5dkPHx8ejTp496H/fWU6lUGDFiBFxdXfH5559rfI4LFixAnz59AACzZs1CZGQkqqqqrOaa4qPivxiyOEqlCil5t3HiSjFOXClGUtYtFN6pFh3LqMqq63A4vRCH0+8endhIJWjn44yuge4ID3RD10A3+DZ2FJzStHh4eCAyMhLr16+HSqVCZGQkPDw81K9fvHgRVVVVGDx4sMZ2vXr1wtmzZzWWnT59GuPGjcOqVavQq1cvAMCZM2dgY2OjLqi/c2/blStX4oknnlAvf+WVVxAVFYUlS5bAxsYGmzZtwuLFi+ttP3v2bBw7dgxJSUnq66n3hIWFqT/28fEBAPWpXqqPBUkWIauwHPsu3sSxzCKczCrG7ao60ZFMikKpwoWc27iQcxvrjmYBAHxdHdAlyB1dA93Qu7UHWnjyBo2oqCjExMQAAFauXKnxmlJ599rzvSO4e2pqahAaGqr+/7y8PAwZMgSvvfYaJkyYoF7+17LS5t62kyZNwqRJkzRee+655yCTyfDtt99CJpOhuroaI0aM0Fhn48aNWLp0KRISEtCsWbN6+7ezs1N/fO+a5b3Pi+pjQZLZSs27jT3n8/DL73n1TjHSg90orcKNszfww9kbAIC2TZ0xONQbgzv4oK23s+B0YkRERKCmpgbA3VOafxYSEgKZTIYdO3agVatWGq/JZDIAd+98HTp0KEJDQ7Fw4UKNdUJDQ6FUKnHw4EH1KdY/u7dtcHAwlixZUu91W1tbjB8/HvHx8ZDJZBg1ahScnJzUrx87dgzR0dH4/PPP0b1794Z9AUgDC5LMypnsEvx84W4pXiksFx3HoqTdLEPazTIs+zUdLT0bYXAHHwwO9UZ7XyM/xyiQjY0NUlJS1B//mbOzM2bOnIm4uDjExcWhdevWqK6uRnp6OpycnODv74/JkycjNzcXGzZsQH5+vnpbd3d3BAUFYfz48YiKilLfpHP16lXk5+dj5MiRmDx5MrKzs7F//34UFBRobGtvbw8AiI6ORrt27QBA4+aavLw8DBs2DKNGjcKgQYPUI+jY2NjA09PTMF8sK8CCJJOmVKqQlFWMPRfysPf3PNworRIdySpcLijHigMZWHEgA4FNnBDRwRvPdPBBR//Gj76zR3xwXzQXF5e/fW3+/Pnw8vJCTEwMMjMzUVtbix49eqjvPj148CCys7PVj07cc+8xj1WrVmH27Nl44403UFRUhICAAMyePVu9bW5uLkJCQrRuCwCtW7dGz549UVRUhMcff1y9TmpqKm7evIn169drPCpy7zEPahiOpEMmKSmrGLtO5WDfxTwU3qkRHYf+4NfYEREdvBEZ5oPwADf1cmscZaW6uhrdu3fH4cOHjfaAvUqlQnBwMCZPnozp06cb5T3vscbvMY8gyWRU1Srw3ekcrD92FSm5t0XHIS1ySirx1ZEr+OrIFYT4uGBCzyAM6eQrOpYQFy5cQG1tLeRyOerq6mBra9gfp/n5+diwYQNycnIwceJEg74X3cWCJOGyiyuw4fhVbEvKRmml6TykT/d3Mfc23t55Dh/9nIqJ3f3Qz8p6sk2bNpDJZPDz88MXX3yByMhIg75f06ZN4eHhgS+++AJubm4P3oB0xoIkIVQqFY5kFGL90Sz8lpoPJU/0m63i8hpsPXEN7fp5wfFWBbzdba1iUAJnZ2ckJycb7f14Ncz4LP9vMZmUO9V12Jl8HV8fy8LlAt6FaklUuPv9vVxwB452Nmgil6Gxox2HvCOzxYIko8gqLEd84hXsPJWDO9V8iN/S3D0DoAL+OMqprFXg+q0K5JVK4d7IDu6NZLC35awk5swaj2BZkGRQ+bersGx/Or5JykYdz6NarJIqJWoVKqjqaiCxk6mX1ymVyC+rRkFZDdwa2cHL2YFFaabuDaDw1+dDLRkLkgyitLIWqw9exrrELIsYFJzur7JOhf2Zd/CsvQ3c3AGJrT3wp+mXVACKSqtRfLscjR3t4N7IHrac59JsKJVKFBQUwMnJyeB365oS6/lMySiqahVYdzQLqxIu845UK7Mr5e415QEtFLCzkQDQfu3xJu7OcymX2ULuYAvpI8x6T+JIpVIEBARonXfSUnGgANILhVKF7SezsezXdOTd5mg31szBVgI3Byke5t4cucwWY7sHYmgnP556NXH29vaQSq3re8SCJJ39fCEXi35J412p1GCBTZwwKyIYg0N9REchUmNBUoMdvVyI//ychrPZJaKjkIXoFuSGf0WGoFNDxnwl0jMWJD2y/NtViP3hd/x0Pk90FLJAEgkwrJMf5jwbArdG9qLjkBVjQdJDU6lU2HIiGx/tSeGExGRwHnIZ5g9tz9OuJAwLkh5KRv4dzN51HieyikVHISsTGeqDuKHt0UQue/DKRHrEgqT7qlUosSrhMlYcyEBNnVJ0HLJSTRrZY97Q9ng2zMpGRCehWJD0t9LyyjBj+xlcyOHUU2QaBnfwxvznO8CDR5NkBCxIqkehVOHzQ5exbF86ahQ8aiTT4uZkh9gh7TG0k5/oKGThWJCkIbPgDmZsP4vT10pERyG6r4EhTbFgWAd4OVvH7PZkfCxIUtuWdA1zv/8dVbU8aiTz4Opoh7ihPJokw2BBEmrqlJj7/e/YcuKa6ChEDTKhZxDei2zHAdBJr1iQVi6vtAqvb0rmKVUye481d8dnY8J5Aw/pDQvSip24Uow3Np1C4Z1q0VGI9MLX1QGrX+6CsGaNRUchC8CCtFLrEq9gwU8pqFXw20+WRWYrxYJhofi/Ls1ERyEzx4K0MlW1CszedR67TueIjkJkUON7BGLOsyG8LkkNxoK0ItnFFXhtYzJ+v8EH/8k68Lok6YIFaSUOpxdgypbTuFVRKzoKkVH5uDpg9dgu6MgptOgRsSCtwJrDmfhwTyoUSn6ryTrJbKX49/Md8EJXf9FRyIywIC3cx7+kYcWBDNExiEzCzKfbIKZ/a9ExyEywIC2USqVC3I8XEZ+YJToKkUl5o29LvB0RLDoGmQEWpAVSKlV4d9d5bDuZLToKkUma2CsI7z8bAolEIjoKmTAWpIWpUygx7Zuz+OHsDdFRiEzaS4/5Y8HzoZBKWZKkHQvSglTXKfCPTafxa8pN0VGIzMLznXyxeGQn2LAkSQsWpIWoqKnDq18n40hGoegoRGYlor03lr/UGfa2HFCANLEgLcDtqlpMjE9C8tVboqMQmaW+bT2xemwXONjZiI5CJoQFaeaKy2swbu3/w4Ucjo5DpIueLZtgzfiucLK3FR2FTAQL0owVlFVj9JfHkZ5/R3QUIovQJdAN8RO7wcXBTnQUMgE86W6mKmrqELUuieVIpEfJV29h/NoTqKxRiI5CJoAFaYYUShViNp/G+ZxS0VGILM7payWI2XyKQzMSC9IcvffdBfyWmi86BpHF2p+aj9m7zouOQYKxIM3Mit/SseXENdExiCzetpPZWLw3TXQMEogFaUZ2nbqOj/deEh2DyGp8+lsGNhy/KjoGCcKCNBOJGYV4Z+c50TGIrM7c3Rewn6NTWSUWpBlIzbuN1zYko1bBmwaIjE2pAqZsOY2UXD5rbG1YkCYut7QSE+OTUFZdJzoKkdUqr1Fg0rok5JdViY5CRsSCNGH3hpDLLeU/SiLRbpRW4ZWvk1FVy2ckrQUL0kQplCq8sfEUUvPKREchoj+czS7BjG/OggOQWQcWpIlavDeNM3MQmaD/ns/FqoOXRccgI2BBmqADafn8B0hkwpbsvYQz2SWiY5CBsSBNTG5pJaZvOwOewSEyXXVKFaZsOY2yqlrRUciAWJAmpE6hRMzm07hVwX90RKbuWnEF3vvugugYZEAsSBOy8Jc0TnpMZEZ2n7mBncnXRccgA2FBmohDlwrw5eFM0TGI6BG9v/sCrhSWi45BBsCCNAHF5TWYuf0srzsSmaHyGgWmbj2NWoVSdBTSMxakCXhn5znkl1WLjkFEDXTueikW/cKZPywNC1KwLSeuYd9FDoRMZO6+PJyJQ5cKRMcgPWJBCpRZcAfzf7woOgYR6YFKBczYfhaFd3g2yFKwIAVRqVSYsf0sKmo4riORpSgoq8bM7WdFxyA9YUEKsjUpG6evlYiOQUR6lpBWgO9O54iOQXrAghTgVnkNFv6cKjoGERnIBz+l4A6nqDN7LEgBFv6SytFyiCxYflk1lu27JDoG6YgFaWRnskuwLSlbdAwiMrB1R7OQfpPT1ZkzFqQRKZUqvL/7ApQcEIDI4tUpVXh/9++iY5AOWJBGtPnENZy7Xio6BhEZybHMIvxw9oboGNRALEgjKS6vwcd7OdIGkbX54KcUVNTwhh1zxII0kv/sSUUJb8whsjq5pVVYvj9DdAxqABakEZy6dgvfJPPGHCJr9dWRTFwuuCM6Bj0iFqSBKZUqzPnuAmfqILJitQoVYr/nDTvmhgVpYJtPXMPvN26LjkFEgh1OL8TPF3JFx6BHwII0oOo6BVb8xmsPRHTXBz+loo7zRpoNFqQBbT95HXm3q0THICITca24At/zsQ+zwYI0kDqFEqsSLouOQUQm5rOEy1DxpgSzwII0kF2nc5BTUik6BhGZmIz8O9hzIU90DHoILEgDUChVPHokor/FexPMAwvSAH48dwNXCstFxyAiE3Ux9zYOpOaLjkEPwILUM5VKxd8OieiBVhzgzwlTx4LUs58v5CE9nyNmENH9JV+9hWOXi0THoPtgQerZpzx6JKKHtJJHkSaNBalH+1Nu4mIuR80hoodzJKMQZ7JLRMegv8GC1CMePRLRo1rxW7roCPQ3WJB6cpS/CRJRA+xPzUcKzzyZJBaknmw+cU10BCIyQyoV8NWRK6JjkBYsSD0orajF3os3RccgIjP133O5KKvihOqmhgWpB7vP5qCmjiP0E1HDVNYqsPsMBzE3NSxIPdh+8rroCERk5rYm8TKNqWFB6ig17zbO55SKjkFEZu5Czm1c4M8Sk2Krj52UlJTgxIkTyM/Ph1Kpeapx3Lhx+ngLk8WjRyLSl21J2ejg5yo6Bv1BotJxYrIffvgBY8aMQXl5OZydnSGRSP63c4kExcXFOoc0VbUKJbp/sB9F5TWioxCRBXBxsEXSe09BZmsjOgpBD6dYZ8yYgaioKJSVlaGkpAS3bt1S/7HkcgSA/Sn5LEci0pvbVXX4LYWzfJgKnQsyJycHU6ZMgZOT0wPXDQoKwrJly+67jkQiwXfffadrLKPYkZwtOgIRWZhvT+eIjkB/eKSCnDBhAp5//nmNZR06dEBwcDAWLlyol0C5ubkYPHiwTpmMoaCsGglpBUZ/XyKybAlpBSit4DORpqBBN+l8//33AIC9e/fi1KlTcHFxQUVFBXbu3Ak7OzuNdYcMGfJI+/b29m5IJKPbdeo66pQ6Xb4lIqqnRqHEj+dvYMzjgaKjWL0GFeTzzz+PP9/bc+vWLcTFxeGv9/tIJJJ6d7WWlZVh9OjR+P777+Hi4oJ3330Xb775psY23377rfqoMCcnB9OnT8fevXshlUrxxBNP4JNPPkFQUBBiY2Oxfv169XYAcODAAcTFxSEkJAQrVqxQ77eoqAi+vr7Ys2cP+vfv35BPW8OOZN69SkSGsfs0C9IUNOga5Ntvvw25XI59+/ZBpVJBqVQiKSkJUqkUcXFxSEtLQ3x8PBwcHLBu3TqNbRctWoSwsDCcOnUK7777LqZNm4Z9+/ZpfZ+Kigr069cPcrkchw4dwpEjRyCXyxEREYGamhrMnDkTI0eOREREBHJzc5Gbm4uePXsiOjoamzdvRnV1tXpfmzZtgq+vL/r169eQT1lDWl4ZJ0UmIoNJulqMGyWVomNYvUc+gtyzZw92796N/fv3axyJLVmyBAMGDMCcOXMAAG3atMHFixexaNEiTJgwQb1er169MGvWLPU6iYmJWLp0KQYOHFjvvbZu3QqpVIo1a9aojxDj4+PRuHFjJCQk4Omnn4ajoyOqq6s1Ts2OGDECb775Jnbv3o2RI0eqt5swYYLGYygN9Vsq7zIjIsNRqe5eixz9eIDoKFbtkY8gw8LCEBQUhPfffx9lZWWYMmUKli9fjpSUFPTq1Uu93ooVK5CSkoL09HQoFAr18h49emjsr0ePHkhJSdH6XsnJycjIyICzszPkcjnkcjnc3d1RVVWFy5cv/21GmUyGsWPHYu3atQCAM2fO4OzZsxpFrYvfUjkwOREZ1uF03gQo2iMfQfr5+WHnzp3o168fIiIikJmZiR9//BHx8fEaR2c9e/bE3LlzH2qff3dUp1Qq0aVLF2zatKnea56envfdZ3R0NDp16oTr169j7dq1GDBgAAIDdT+nX1JRg1PXSnTeDxHR/SRmFEKhVMFGqvtZL2qYBt2kExAQgIMHD6Jfv364efMmpFIpQkJCcOTIEfU6Li4uKC0tRXBwMGxs/jcqxPHjxzX2dfz4cQQHB2t9n/DwcGzbtg1eXl5wcXHRuo69vb3GEeo9oaGh6Nq1K7788kts3rwZn376aUM+1XoS0gqg4N2rRGRgt6vqcCa7BF0C3URHsVoNHiigWbNmSEhIgJ2dHYYPH45XX30V+/fvx/z583Hp0iXExsZCqVRi5syZGtslJiZi4cKFuHTpElauXInt27dj6tSpWt9jzJgx8PDwwNChQ3H48GFcuXIFBw8exNSpU3H9+t27SIOCgnDu3DmkpaWhsLAQtbX/e34oOjoaH330ERQKBYYNG9bQT1XDfl5/JCIjOXSJp1lF0mkkHT8/P3z44Ye4evUqRo8ejblz52Lt2rVo164dNm/ejBEjRtS77jdjxgwkJyejc+fOmD9/PhYvXoxBgwZp3b+TkxMOHTqEgIAADB8+HO3atUNUVBQqKyvVR5SvvPIK2rZti65du8LT0xOJiYnq7V966SXY2tpi9OjRcHBw0OVTBQAolSpeFyAio+HPG7F0HqwcAFatWoUFCxbgxo27E37ee0ZR9Ewe2dnZCAoKQlJSEsLDw3Xe39nsEgxdmfjgFYmI9MBGKsGpOQPh6mj34JVJ7/RSkPcUFBTA0dERcrlcX7tskNraWuTm5mLWrFm4evWqxlGlLj5LyMDCn9P0si8iooexakw4Bof6iI5hlXQerDw2NhZXr14FcPfOUtHlCNy9zhkYGIjk5GSsXr1af/vNKNTbvoiIHsahdP7cEUXngvzhhx/QsmVLDBgwAJs3b0ZVVZU+cumkb9++UKlUSEtLQ2hoqF72WVWrwMmsW3rZFxHRw+J1SHF0Lsjk5GScOnUKYWFhmDZtGnx8fPD6668jKSlJH/lMRvLVW6iuUz54RSIiPbp+qxKZBRzaUgSdCxK4O7rO0qVLkZOTg7Vr1yInJwe9evVCaGgoPvnkE5SWlurjbYQ6epmnOYhIDD7uIYZeCvIepVKJmpoaVFdXQ6VSwd3dHatWrYK/vz+2bdumz7cyurPZ5l/yRGSejmUWiY5glfRSkMnJyYiJiYGPjw+mTZuGzp07IyUlBQcPHkRqairmzp2LKVOm6OOthEnJvS06AhFZqYv8+SOEzo95hIWF4eLFixg0aBBeeeUVPPfccxpDywF3H/9o2rRpvbkhzUX+7So89sF+0TGIyEpJJMD52EGQyxo0Oig1kM5f7RdeeAFRUVHw8/P723U8PT3NthwB4Hf+9kZEAqlUQGrubXQNchcdxarofIp19OjRiI2N1UMU08XTq0QkWkpemegIVqdBR5DTp0/X+P+tW7eisrISXl5e9dZdsmRJw5KZkIs3WJBEJBZ/UTe+BhXk6dOnNf6/a9eu2LNnD7y8vODt7a1e/nfzPJob/sUkItFS+XPI6BpUkAcOHKi3bN++fVi/fj02btyocyhTUlmjwJXCctExiMjKpeWVQaVSWcyBhznQ2y1RAwcOxMCBA/W1O5ORdrMMnB+ZiEQrr1HgWnEFAps0Eh3FauilIK9fv47vv/8e165dQ01NjcZr5n4NktcfichUpOTeZkEakc4FuX//fgwZMgTNmzdHWloaOnTogKysLKhUKr3MwSgarz8SkalIyS1DRAdOfWUsOj/m8e6772LGjBm4cOECHBwcsHPnTmRnZ6NPnz544YUX9JFRKI5gQUSmgr+wG5fOBZmSkoLx48cDAGxtbVFZWQm5XI64uDj85z//0TmgaGl89oiITEQqfx4Zlc4F2ahRI1RXVwMAfH19cfnyZfVrhYXmPQNGSUUN7lTXiY5BRAQAyL5VgapahegYVkPna5Ddu3dHYmIiQkJCEBkZiRkzZuD8+fPYtWsXunfvro+MwhSUVYuOQESkplIBhXeq0czNSXQUq6BzQS5ZsgR37tydzDM2NhZ37tzBtm3b0KpVKyxdulTngCLlsyCJyMQU3qlhQRqJzgXZokUL9cdOTk747LPPdN2lyeARJBGZmkL+XDIavU6YbGlYkERkagrv8OeSsTToCNLNze2hhzsqLi5uyFuYhAL+RSQiE8OCNJ4GFeSyZcv0HMM08QiSiExN4Z2aB69EetGggrz33KOlY0ESkanhmS3j0dtg5QBQWVmJ2tpajWUuLi76fAujYkESkanhTTrGo/NNOuXl5YiJiYGXlxfkcjnc3Nw0/piz/LIq0RGIiDTwGqTx6FyQb7/9Nn777Td89tlnkMlkWLNmDebNmwdfX198/fXX+sgoRK1CiZLK2gevSERkRLwGaTw6n2L94Ycf8PXXX6Nv376IiopC79690apVKwQGBmLTpk0YM2aMPnIaXeGdaqg4DyQRmZjSylrU1Clhb8un9AxN569wcXExmjdvDuDu9cZ7j3U88cQTOHTokK67F6awjL+lEZFpKirnaVZj0LkgW7RogaysLABASEgIvvnmGwB3jywbN26s6+6FKa/hIOVEZJqKeJrVKHQuyIkTJ+Ls2bMA7s4Nee9a5LRp0/DWW2/pHFAUnl4lIlNVo1CKjmAVdL4GOW3aNPXH/fr1Q2pqKk6ePImWLVuiY8eOuu5eGBXYkERkmhRK/nwyBr0+BwkAAQEBCAgI0PdujY9//4jIRNUp+APKGHQ+xTplyhQsX7683vIVK1bgn//8p667F4Z//YjIVPEI0jh0LsidO3eiV69e9Zb37NkTO3bs0HX3wvAaJBGZqjolr0Eag84FWVRUBFdX13rLXVxcUFhYqOvuheE1SCIyVTyCNA6dr0G2atUKP//8M2JiYjSW79mzR2MyZXPDv3+kTy2dKvGl33/hU3FJdBSyAEqbDwA0FR3D4ulckNOnT0dMTAwKCgrQv39/AMD+/fuxePFis54WS8VzrKRHlyscMejyCCxvcQIRBWshqS4THYnMGgcKMAadCzIqKgrV1dVYsGAB5s+fDwAICgrCqlWrMG7cOJ0DisJ6JH2rVUrwesbjaCcPxZfNvkWz6/8VHYnMlZTDzBmDRKXHQ6WCggI4OjpCLpfra5fCHEjNx8R1SaJjkAWLbpaNt+u+hH1JhugoZG5e/g5o2U90Count19DCgoKkJaWhrNnz5r1zTn38CYdMrQ11/3RuSAWh/xfh8rOSXQcMidSG9EJrIJe5oOMioqCj48PnnzySfTu3Rs+Pj6YNGkSKioq9JFRCF6CJGMoV0gxLr03RkiXIt+3v+g4ZC5sZKITWAWdC3L69Ok4ePAgfvjhB5SUlKCkpAS7d+/GwYMHMWPGDH1kFMLWhuf4yXhOlTrjscxofNp0Pupc/EXHIVPn2Fh0Aqug8zVIDw8P7NixA3379tVYfuDAAYwcORIFBQW67F6YM9kleH5lougYZIVc7eqwJigBXW9shETBWRtIixmXAGc+5mFoOh8mVVRUoGnT+t8oLy8vsz7F6uZkJzoCWanSWlu8kP4UxsuW4ZZ3/VGqiHgEaRw6F2SPHj0wd+5cVFVVqZdVVlZi3rx56NGjh667F6axo73oCGTlDhU3Ruesf+ArnzlQNPIWHYdMhZ0TYMtrkMag8ynWCxcuICIiAlVVVejYsSMkEgnOnDkDBwcH/PLLL2jfvr2+shqVSqVCy9k/cUQdMgleslp8FbAXHXK2QaLkZN5WzdkXmJEiOoVV0MtzkJWVldi4cSNSU1OhUqkQEhKCMWPGwNHRUR8ZhekUtxclFbWiYxCpDfYsxELHr+Gcf1J0FBLFqz3wxlHRKayCXgcKsDT9Pk7AlcJy0TGINEgkKnzU/DxeuPUlpJVFouOQsQX2Aib+JDqFVeCzDPfhIed1SDI9KpUE72SGoW/VIqT7/x9UEv4ztiqObqITWA3+y7oPL2cH0RGI/ta1SgcMTB+Ot1wXo9Kjg+g4ZCwOjUUnsBosyPvwcuGdYmT6duQ1RYecWfix2TSoZC6i45ChNfIQncBqsCDvo6kLjyDJPChUUsRkdMOguqW41uw50XHIkNyCRCewGizI+/By5hEkmZdL5Y54MuMlxLovRLVbG9FxyBDczXcienOjc0EqFAp8/PHHeOyxx+Dt7Q13d3eNP+aMR5BkrtbdaIZO+XPwm/8/oLJrJDoO6ZN7c9EJrIbOBTlv3jwsWbIEI0eORGlpKaZPn47hw4dDKpUiNjZWDxHF8W1s3s9xknWrVNggKr0XhkmWIs9voOg4pA829oBLM9EprIbOz0G2bNkSy5cvR2RkJJydnXHmzBn1suPHj2Pz5s36ymp0CqUKIe//jOo6pegoRDp7M+AKplR/CbvSLNFRqKGatALeTBadwmrofASZl5eH0NBQAIBcLkdpaSkA4Nlnn8V///tfXXcvlI1UgtZN5aJjEOnFp9eaI7woDsf9X4GK8wmaJzeeXjUmnQuyWbNmyM3NBQC0atUKe/fuBQAkJSVBJjP/f4TB3rxtnixHWZ0tRqX3w1j7ZSjyeVJ0HHpUvEHHqHQuyGHDhmH//v0AgKlTp2LOnDlo3bo1xo0bh6ioKJ0Dihbs7Sw6ApHeJd5yRZcrr+EL71go5L6i49DD4g06RqX3sViPHz+Oo0ePolWrVhgyZIg+dy3E4fQCvPzVCdExiAzG074WawJ/RVjOFs4UYupe2ga0jRCdwmpwsPIHKCirRrcFv4qOQWRwAz2KsbjR13C5yV8ITdabp4AmLUWnsBp6GSggLS0NMTExGDBgAJ566inExMQgLS1NH7sWztNZhiaNOGg5Wb59he4Iu/pPbPZ5F0onDmdmchxceQ3SyHQuyB07dqBDhw5ITk5Gx44dERYWhlOnTqFDhw7Yvn27PjIK15bXIcmKzL4Sit4Vi5Dq/yJnCjElvp0BiUR0Cqui8ynWFi1aYOzYsYiLi9NYPnfuXGzYsAGZmZk6BTQFcT9cxNrEK6JjEBnd803z8YFdPJwKz4qOQk9MB56aKzqFVdHLc5Djxo2rt3zs2LHIy8vTdfcmgXeykrX67qYXQnPewnd+M6HkNEti+YWLTmB1dC7Ivn374vDhw/WWHzlyBL1799Z19yaBp1jJmilUUvzzcjgG1izGlWbPQwWe5hPCr4voBFbHtiEbff/99+qPhwwZgnfeeQfJycno3r07gLuPemzfvh3z5s3TT0rB2jR1hlQCKHm/L1mxyxWO6JcxEi/79sK/8BUcilNFR7Iecm/Ahc+rGluDrkFKpQ934CmRSKBQKB45lCl6aslBZOTfER2DyCTIpEqsaPH/8FT+WkhqykXHsXxtnwFe2iI6hdVp0ClWpVL5UH8spRwBoGfLJqIjEJmMaqUUr2T0wBDVMtzw44PrBufL648i6HwN8tq1a6iurq63XKVS4dq1a7ru3mT0bu0pOgKRyTlf1gg9L4/Dfzw/QK0rn9EzGL/OohNYJZ0LMigoCOHh4bh8+bLG8vz8fDRvbjnjBnZv4Q5bKW9OINJmVXYQOhXNQ6L/ZKhsOdG4XklsAL+uolNYJb08BdyuXTs89thj6kHL77GkUeycHezQyb+x6BhEJqu8zgZj0vtglO0yFPr2FR3Hcvh2Bhwbi05hlXQuSIlEgs8++wzvvfceIiMjsXz5co3XLAlPsxI92P8rcUHXzFfxWdN5qHP2Ex3H/LXoKzqBSSkpKcG8efOM8py9zgV57yhx2rRp+Pbbb/H+++8jOjpa63VJc/dEa45PSfSwFl5tjW4lH+KU/3iopHai45ivlv1EJ9AQGxuLTp06CXv/CRMmoLq6Gt7e3g+9TUMz63WgxcGDB+Po0aNISEjAs88+q89dm4RO/o3h7NCgR0eJrNKtWlsMTx+ESY7LUNq0u+g45seuEdDssQZvPmHCBEgkErz22mv1XnvjjTcgkUgwYcKER9rnzJkz611OM5bFixfD2dkZCxYseKTtGppZ54Ls06cP7O3/N9tFSEgITpw4ATc3N4u6BgkANlIJH/cgaoDfitzQ8eoUfO3zLygaeYmOYz6a9wZsdZtNyN/fH1u3bkVlZaV6WVVVFbZs2YKAgIBH3p9cLkeTJmJ+Ds6YMQMbNmx45Mt3Dc2sc0EeOHAAjRs31ljm7u6OgwcPQqlU6rp7k/MEr0MSNdj7V9rjifKFuOj/ElQSG9FxTF/rp3XeRXh4OAICArBr1y71sl27dsHf3x+dO//v8RGVSoWFCxeiRYsWkMlk6NixIw4cOKB+/d7R6F//JCQkAACqq6vx9ttvw9/fHzKZDK1bt8ZXX331wG3j4uIQGhpaL3eXLl3w/vvvA4DWbYOCggAACQkJkEgk2L9/P7p27QonJyf07NlTY8pFYadYf/rpJ/zyyy/1lu/duxd79uzRdfcmp3crXock0kVulT2eSX8OU5yXoNyzk+g4pq3NIL3sZuLEiYiPj1f//9q1axEVFaWxznvvvYd///vfiI2Nxblz5/DMM88gMjISubm5AIBPPvkEubm56j9Tp06Fl5cXgoODAQDjxo3D1q1bsXz5cqSkpGD16tWQy+UP3DYqKgoXL15EUlKSOsu5c+dw+vRp9enfP2+bkZGBVq1a4cknn9TI/69//QuLFy/GyZMnYWtrW+/zawidC3LWrFlaR8xRKpWYNWuWrrs3OUEejeDv7ig6BpHZ+yHfEx2uv4Wdfm9B6eAmOo7p8QoBXJvpZVcvv/wyjhw5gqysLFy9ehWJiYkYO3as+vXy8nIsWbIEsbGxGDduHNq2bYsPP/wQISEhWLlyJQDA1dUV3t7e8Pb2xtGjR/H5559j165d8Pb2xqVLl/DNN99g7dq1GDZsGFq0aIEBAwbgxRdf1Lrt6tWrsXPnTnh7e6NZs2YYNGiQRoHHx8ejT58+aNHi7uAT97Zt2rQp3nrrLbi6uuLzzz/X+BwXLFiAPn36ICQkBLNmzcLRo0dRVVWl09dN54JMT09HSEhIveXBwcHIyMjQdfcm6YlWPM1KpA8qlQQzLnfGUzWLkek/nDOF/JkeTq/e4+HhgcjISKxfvx7x8fGIjIyEh8f/zoZdvHgRVVVVGDx4sMZ2vXr1wtmzmnOBnj59GuPGjcOqVavQq1cvAMCZM2dgY2ODPn363DfHvW1XrlyJJ554Qr38lVdewZYtW1BVVYXa2lps2rRJ6xHg7NmzcezYMXz33XdwdNQ8UAkLC1N/7OPjA+DugDW60PmWTFdXV2RmZqrPB9+TkZGBRo0a6bp7k/RUOy9sOWE5w+gRiZZZ4YD+6f+HUT69ECv9Cg5FF0VHEi9kqF53FxUVhZiYGABQHxXec+9+kW7dumksr6mp0bg+mJeXhyFDhuC1117TuPv1r2Wlzb1tJ02ahEmTJmm89txzz0Emk+Hbb7+FTCZDdXU1RowYobHOxo0bsXTpUiQkJKBZs/pH1nZ2/3uU6N5NPLreB6NzQQ4ZMgT//Oc/8e2336Jly5YA7pbjjBkzMGTIEF13b5L6tPGEh9wehXdqREchsihbc32wU/ovfNriBAYVrIWkukx0JDGatNL7BMkRERGoqbn7M2vQIM1rmyEhIZDJZNixYwdatWql8ZpMJgNw987XoUOHIjQ0FAsXLtRYJzQ0FEqlEgcPHsRTTz1V773vbRscHIwlS5bUe93W1hbjx49HfHw8ZDIZRo0aBScnJ/Xrx44dQ3R0ND7//HP1tIrGoHNBLlq0CBEREQgODla3+vXr19G7d298/PHHOgc0RbY2Ugzp6Ie1iVdERyGyOLVKCV7LeBzt5KH40m8XmuX8JDqS8YWO1PsubWxskJKSov74z5ydnTFz5kzExcUhLi4OrVu3RnV1NdLT0+Hk5AR/f39MnjwZubm52LBhg8apS3d3dwQFBWH8+PGIiorC8uXL0bFjR1y9ehX5+fkYOXIkJk+ejOzsbOzfvx8FBQUa2957TDA6Ohrt2rUDACQmJqrXycvLw7BhwzBq1CgMGjRIPYKOjY0NPD0Ne7lLL6dYjx49in379uHs2bNwdHREWFhYvTuMLM3wcBYkkSGl3HHCE3fGIrpZH7xd9yXsSyzzngatwl4wyG5dXFz+9rX58+fDy8sLMTExyMzMRG1tLXr06IGPPvoIAHDw4EFkZ2ejbdu2GtsdOHAAffv2xapVqzB79my88cYbKCoqQkBAAGbPnq3eNjc3t979Kve2BYDWrVujZ8+eKCoqwuOPP65eJzU1FTdv3sT69euxfv169fLAwEBkZWXp8uV4oAZNmEx3RSw7hNQ8Kz0FRGREjWyUWNUiEb3z1kNSWyE6jmH5dQVeETNSzT3V1dXo3r07Dh8+rH5Uw9BUKhWCg4MxefJkTJ8+3Sjv+SANOoJcvnw5Xn31VTg4OGgMTq7NlClTGhTMHIwIb4YFP6WIjkFk8coVUoxL741w105Y7bsNXjd+Ex3JcML0f3r1UV24cAG1tbWQy+Woq6uDra1hh9jMz8/Hhg0bkJOTg4kTJxr0vR5Fg44gmzdvjpMnT6JJkyb3nfNRIpEgMzNTp4CmLL+sCj0+/A0KJQ/CiYxpRuBlvF75BWxvZ4uOol9SW2B6KiAX+yhZWVkZ+vbti7y8PHzxxReIjIw06PtJJBJ4eHjgk08+wejRow36Xo+Cp1h1NCH+BBLSCh68IhHplatdHdYEJaDrjY2QKCzkjvJWTwFjd4pOQX/Q62we1mh4uH5GuiCiR1Naa4sX0p/CeNky3PLuJTqOfhjg7lVquAYdQT7KBVRtz7xYkqpaBbot+BVlVXWioxBZtTnNUzDh9pewKTf8RLoGYe8MzEgFZMa5KYYerEFXXk+fPv1Q6z3qlCTmyMHOBs+G+WDLCQu7FkJkZuZfaYfPZf/BVwF70SFnGyRKM/ultfMYlqOJ4TVIPUjKKsYLq4+JjkFEfxjsWYiFjl/DOf+k6CgPRyIFYk4CTVqKTkJ/wmuQetAtyB3NPSxz3Fkic7SnwANh2dOwzXcWlI5mMMl566dZjiaIBaknE3sFiY5ARH+iUknwTmYY+lYtQrr//0ElMeEfd4+/JjoBaWHCf2PMywtd/OHmZPfgFYnIqK5VOmBg+nC85boYlR4dRMepzysEaNlPdArSggWpJ472Nni5R5DoGET0N3bkNUWHnFn4sdk0qGR/Pyap0T0+WXQC+hssSD0a3yMQDnb8khKZKoVKipiMbhhUtxTXmj0rOg7g6A6EvSg6Bf0N/jTXoyZyGUZw4AAik3ep3BFPZoxGXJP/oNqtjbggXcYDdg+ebJjEYEHq2Su9W0Bq+Y9/ElmEtTn+6JQ/Bwf834DKzsh3okvtgG6vGPc96ZGwIPUsyKMRnuvoKzoGET2kSoUNJqY/gWGSpcjzHWi8Nw5/GXD1M9770SNjQRrAm/1b8SiSyMycuS1H98yJWOr1b9S6BBr2zWwdgCffMux7kM5YkAbQyssZz4T6iI5BRA3wybUWCC+ej+P+0VDZyAzzJl0nAS4802TqWJAGMmVAa1jBULREFqmszhaj0vtjrP0yFPv01u/O7RoBvR9+wgcShwVpIG2aOiOivbfoGESkg8Rbrgi/8jq+8J4LhVxPR3zdXwMaeehnX2RQHKzcgFJybyNy+WEo+RUmMnue9rVYE/Qrwq5vafhMIQ6uwNRzgGNjvWYjw+ARpAG183HBi90CRMcgIj0oqLHD0EuDMdlpGW57dWvYTnq8yXI0IzyCNLDi8hr0+zgBpZW1oqMQkR590OI8RpV8CWlF4cNt4OQBTD3LOR/NCI8gDcy9kT1mPC1wpA4iMojZmaHoXbEIaf4jH26mkN7TWY5mhkeQRqBQqvDsp0eQkntbdBQiMoDhTfPxb7t4OBWe1b5Ck9bAG8cAG874Y054BGkENlIJ5g1pLzoGERnIrpteCM15C7v9ZkDp0Lj+Cs8sZDmaIRakkTzW3B1DO/HBYCJLpVBJMfVyFwysWYysZkOhwh8PQgc/C7TsLzYcNQhPsRrRzdtV6P9xAsprFKKjEJGBjfO9gXdtN8Lxpa8BNwMPXUcGwSNII2rq4oCY/q1FxyAiI/j6hi/WtvuK5WjGWJBGNumJ5mjhYeRpdYjI6No2dcarT7YQHYN0wII0MntbKd5/LkR0DCIyIIkE+GB4B9jZ8EesOeN3T4C+bb3wVLumomMQkYGMfiwAXQLdRccgHbEgBZn/fHu4OvK2byJL4+UswzuDg0XHID1gQQri4+qIj4aHio5BRHo2b0h7uDjwl19LwIIUaHCoD0Z18xcdg4j05MWu/hjMydItBgtSsLnPtUcLT97VSmTuWnvJEcsRsywKC1IwR3sbLB/VGfa8243IbDnYSbFyTDgc7W1ERyE94k9lE9DBzxVvDWorOgYRNdDc59qjTVNn0TFIz1iQJiK6d3P0bu0hOgYRPaJnw3zw0mOcGN0SsSBNhEQiweKRHdGkkb3oKET0kAKbOOFD3o1usViQJsTL2QGLXggTHYOIHoK9jRSfvtQZznykw2KxIE1M/+CmGN+DgxsTmbq3I9oirFlj0THIgFiQJujdZ9oh2JsX/IlM1YBgL0T35kDklo4FaYIc7GywZnxXeMhloqMQ0V/4uDrg4xc6io5BRsCCNFHN3Jzw1fiucLTjc1VEpkJmK8WK0eFw4810VoEFacI6+jfGslGdIJWITkJEUgnwyajO6BLoJjoKGQkL0sQNau+N2c+0Ex2DyOrNfa49Ijp4i45BRsSCNAPRvVtgHO9sJRJmcp8WGN8zSHQMMjIWpJmY+1x7DAj2Eh2DyOo838kXsyI4v6M1YkGaCRupBJ+O7owOfi6ioxBZjV6tmmDRCx0hkfBGAGvEgjQjTva2WDu+G3xdHURHIbJ47XxcsHpsF9hxph2rxe+8mfFyccDaid3gLLMVHYXIYvk1dsS6id04jJyVY0GaoWBvF6wcEw47G572IdI3V0c7rJvYDU1deKbG2rEgzdSTbTzx6UssSSJ9sreV4ouXu6A153YksCDNWkQHb6wYzZIk0geZrRSrxoTj8RZNREchEyFRqVQq0SFIN3t/z8M/Np9CrYLfSqKGaGRvgy/HdUXPVpy0nP6HBWkh9l28iX9sOoUahVJ0FCKzcu+aY+cADiFHmliQFmR/yk28vukUaupYkkQPw0Muw8boxxDszeeLqT4WpIU5mlGIV74+ifIahegoRCbNr7EjNkY/juYejURHIRPFgrRAp6/dwoT4JJRW1oqOQmSSWng0wsbox+Hb2FF0FDJhLEgLlZp3Gy9/dQIFZdWioxCZlHY+Ltgw6TFOSE4PxIK0YFeLyjFmzf/D9VuVoqMQmYTwgMaIn/gYXB05Qg49GAvSwuWXVeH1jaeQfPWW6ChEQvVq1QRfjusKJ3sO00gPhwVpBWrqlJj7/QVsOZEtOgqREEM7+WLh/4VBZmsjOgqZERakFdlw/CrifvidAwqQ1bCRSvBORFu8+mRL0VHIDLEgrcyJK8V4Y1MyCu/UiI5CZFCujnb49KXOeLKNp+goZKZYkFYot7QSkzck49z1UtFRiAyitZccX47riiA+40g6YEFaqapaBWbvOo9dp3NERyHSq4j23vh4ZEfIOWcq6YgFaeXWHM7Eh3tSoVDyrwGZNzsbCd6JCEZ07xaio5CFYEESEjMKEbP5FG5VcOQdMk8+rg5YMTocXQI54DjpDwuSAADZxRWYtu0MTvJ5STIzT7bxxLIXO8G9kb3oKGRhWJCkplSqsDbxCj7em4aqWs4IQqbN3kaKqU+1xut9WkIq5aThpH8sSKons+AO3tpxjqPvkMnqHNAYC0eEoXVTZ9FRyIKxIEkrpVKFr45cweJ9PJok0+Fkb4MZT7fFxJ5BPGokg2NB0n1lFtzBzO1ncepaiegoZOWeaOWBD4eHwt/dSXQUshIsSHqge0eTH+9NQ3UdjybJuFwcbPGvyHZ4sVuA6ChkZViQ9NAu/3E0eZpHk2QkT4c0xb+f7wAvFwfRUcgKsSDpkSiUKqw5nIlP9qejokYhOg5ZKA+5PWKHtMezYb6io5AVY0FSg+SXVWHZr+n4JikbdRyFh/REIgGGd26G9yLbwY3PNZJgLEjSSUb+Hfzn51Tsu3hTdBQyc/2DvTDz6bYI8XURHYUIAAuS9ORkVjE++CmFd7vSI+sW5Ia3I4LRLchddBQiDSxI0qs953Ox6Jc0ZBaWi45CJq6djwveHtQW/YK9REch0ooFSXpXp1Biy4lr+GR/OidmpnoCmzhh+sA2GNLRFxIJH/Yn08WCJIMpr67D54cyseZwJu94JXg5yzBlQGu82M0fdjZS0XGIHogFSQZXdKca649dxcbjV1FcziNKa9PYyQ6Tn2yJib2C4GBnIzoO0UNjQZLRVNUqsD35OtYeuYIrvEZp8UJ8XDCuRyCe7+zHYiSzxIIko1MqVdiXchNrDmciKYszhlgSexspBod6Y1yPQHQJ5F2pZN5YkCTU7zdKsfH4VXx3+gYqa3md0lz5uDpg9GMBGPVYADydZaLjEOkFC5JMQmllLXYkX8em41f5iIgZ6dGiCcb1CMTAkKaw5Y03ZGFYkGRSVCoVEjOKsPtMDvZevInSylrRkegv5DJbDOvsh3E9AjlhMVk0FiSZrFqFEokZhfjpfC72XryJkgqWpSiOdjboF+yJZ0J90D/YC072tqIjERkcC5LMQp1CiaOXi/DT+Vz88nsebrEsDc7BTop+bb3wTKgPBrRjKZL1YUGS2alTKHEs815Z3uSzlXrkIbdHv7ZeGNCuKZ5s48FSJKvGgiSzVqdQ4nhmMX5NuYkTV4qRmncbnH3r0QR7O2NAu7ul2KlZY0ilHP6NCGBBkoUpq6pF8tVbOJl1C0lZxTh7vQRVtUrRsUyGg50UoX6uCA9wQ+eAxggPcIOXi4PoWEQmiQVJFq1WocT5nFKczCpGUtYtJF+9ZVWnZP3dHREe4KYuxHY+LhwHleghsSDJ6mTk38HJrGKczylFVlE5sgorkFtaafanZl0cbNHOxwXhgW7o7N8YnQPc+NA+kQ5YkEQAqusUyC6uQFZhxd3SLCrH1aK7H98oqYLCBNrTwU6KZm5O8HdzhL+7E/zdnODv7nh3mbsTXB3tREcksigsSKIHqKlTIvtWBa4WlSPnViVKKmpRWln/T3lNHapqlaiqVaC6VokaRf1rn/a2Ujja2cDB7t5/beBob/O/j//4r5O9DZq6yODv7vRHATrCUy7j/IlERsSCJDIQhVKFqloFauqU6mLkHaJE5oMFSUREpAVvZyMiItKCBUlERKQFC5KIiEgLFiQREZEWLEgiIiItWJBERERasCCJiIi0YEESERFpwYIkIiLSggVJRESkBQuSiIhICxYkERGRFixIIiIiLViQREREWrAgiYiItGBBEhERacGCJCIi0oIFSUREpAULkoiISAsWJBERkRYsSCIiIi1YkERERFqwIImIiLRgQRIREWnBgiQiItKCBUlERKQFC5KIiEgLFiQREZEWLEgiIiItWJBERERasCCJiIi0YEESERFpwYIkIiLSggVJRESkBQuSiIhICxYkERGRFixIIiIiLViQREREWrAgiYiItGBBEhERacGCJCIi0oIFSUREpAULkoiISAsWJBERkRYsSCIiIi3+P78OYBWGDODVAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Teraz przeanalizujemy tych, którzy przeżyli pomimo braku łódki ratunkowej\n",
"df5 = df3[(df3['ocalal'] == 1) & (df3['mial_lodke'] == 0)]\n",
"\n",
"by_sex = df5.groupby('plec').agg({'ocalal': ['count']})\n",
"by_sex.rename(index={'M': 'Mężczyźni', 'K': 'Kobiety'}, inplace=True)\n",
"by_sex.columns = ['liczba ocalałych pomimo braku łódki']\n",
"print(by_sex)\n",
"by_sex.plot(kind='pie', subplots=True)\n",
"plt.show()\n",
"plt.clf()"
]
},
{
"cell_type": "markdown",
"id": "92214b90-3e2d-4368-95e2-b21e7eeaada4",
"metadata": {},
"source": [
"Widzimy tutaj zdumiewającą rzecz. Jaka miażdżąca statystyka na rzecz kobiet! Ciekawe z czego to wynika? \n",
"Czy z tego, że kobietom bardziej pomagano przeżyć (np. użyczając im jakieś przedmioty, których mogły się złapać, \n",
"a które wypłynęły na wierzch, czy może z tego, że co do natury mają większą wytrzymałość?"
]
},
{
"cell_type": "code",
"execution_count": 181,
"id": "3d178fdd-9932-4ad3-8078-b3cd09c3644e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[]], dtype=object)"
]
},
"execution_count": 181,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAGxCAYAAADGVgTvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAc10lEQVR4nO3de5DVdf348deBXY4usWh4YRk2pdJMEGxYo1UrBKHwEubYVJQ53WYsNB1qutiUS2kwzdRY40ipjdokYaWWlSDLFGtOQwLlSHSjkQbKCy0qS6weD+zn90dfzs9tF/Tsnn2fs+vjMbNj53M+n7NvPq9zDs/OWfbksizLAgBgiI2q9gIAgFcG0QEAJCE6AIAkRAcAkIToAACSEB0AQBKiAwBIQnQAAEmIDgAgCdEBDNjs2bNj9uzZAzr2xBNPjAsuuKCyCwJqWl21FwAMXzfddFO1lwAMI6IDGLBTTz212ksAhhFvrwCxdevWyOVy8eMf/7i0bfPmzZHL5WLq1Km99n3Xu94VM2fOjIj+31554YUX4rrrrotTTjkl8vl8HHvssfHhD384/v3vf7/kOm666aaoq6uLa6+9dvB/KKDmiA4gpk6dGk1NTbFu3brStnXr1sWRRx4Zf/rTn+Lxxx+PiIj9+/dHR0dHnHvuuf3eTk9PTyxcuDCWL18eixYtil/+8pexfPnyaG9vj9mzZ8dzzz3X73FZlsVnPvOZuPrqq+PWW2+NpUuXVv4PCVSdt1eAiIiYO3dun+j44Ac/GD/5yU9i3bp18aEPfSgefvjh6OrqOmR0/OhHP4o1a9bE3XffHRdffHFp+4wZM+KMM86I22+/PT7xiU/0Oua5556LSy+9NNatWxerV6+OuXPnDs0fEKg6r3QAEfHf6Hjsscdi+/bt8fzzz8dDDz0U73znO+Occ86J9vb2iPhviOTz+Tj77LP7vY1f/OIXcdRRR8WFF14Y+/fvL32dfvrpMXHixFi/fn2v/Xfv3h1z5syJhx9+OB566CHBASOcVzqAiIjSqxfr1q2LKVOmRLFYjDlz5sRTTz0VX/3qV0vXnXXWWXHkkUf2extPPfVUPPvsszFmzJh+r+/s7Ox1+W9/+1s888wz8fGPfzymTZtWwT8NUItEBxAREZMnT46TTz451q1bFyeeeGK0tLTEUUcdFXPnzo1PfvKT8bvf/S42bNhw2J+3OOaYY2LChAmxZs2afq8fN25cr8utra3xnve8Jz760Y9GRMSKFSti1CgvwMJIJTqAknPPPTd+9KMfRXNzc5x//vkREXHyySfHa17zmvjyl78cxWLxkD/PERFxwQUXxKpVq+LAgQMxa9asl/U9L7vsshg7dmwsWrQo9u3bF3fccUeMHj26In8eoLaIDqBk7ty5cdNNN0VnZ2fccMMNvbbfdtttcfTRR5f+uWx/3ve+98Wdd94Z5513Xlx11VXx5je/Oerr6+Of//xn/PrXv46FCxfGu9/97j7HXXLJJdHQ0BCXXHJJPPfcc/HDH/7wkG/RAMOX1zGBkjlz5sSoUaNi7Nix0draWtp+8NWNc84557Bvf4wePTruu+++uOaaa+Kee+6Jd7/73XHRRRfF8uXL44gjjojTTjvtkMeed955cf/998fatWtj4cKFh/zntcDwlcuyLKv2IgCAkc8rHQBAEqIDAEhCdAAASYgOACAJ0QEAJCE6AIAkkv9ysJ6ennj88cdj3LhxkcvlUn97AGAAsiyLvXv3xqRJkwb8cQXJo+Pxxx+P5ubm1N8WAKiAnTt3xuTJkwd0bPLoOPiBTzt37ozGxsbU337EKRaLsXbt2pg/f37U19dXezn8H3OpXWZTm8yldh2cTWtra0yZMqXPBzeWI3l0HHxLpbGxUXRUQLFYjIaGhmhsbPRArSHmUrvMpjaZS+06OJuDsTGYH43wg6QAQBKiAwBIQnQAAEmIDgAgCdEBACQhOgCAJEQHAJCE6AAAkhAdAEASogMASKKs6Ghra4tcLtfra+LEiUO1NgBgBCn7s1emTp0a69atK10ePXp0RRcEAIxMZUdHXV2dVzcAgLKVHR3btm2LSZMmRT6fj1mzZsXXvva1eO1rX3vI/QuFQhQKhdLlrq6uiPjvp9YVi8UBLJkXO3gOncvaYi61y2xqk7nUrkrOJpdlWfZyd169enV0d3fHySefHE899VRcd9118Ze//CW2bt0aEyZM6PeYtra2WLp0aZ/tK1eujIaGhoGvHABIpru7OxYtWhR79uyJxsbGAd1GWdHxv/bt2xeve93r4rOf/WwsWbKk3336e6Wjubk5Ojs7B7zoQ5nW9kBFby+FP7a9Y1DHF4vFaG9vj3nz5kV9fX2FVsVgmUvtMpvaZC616+BsZs2aFU1NTYOKjrLfXnmxsWPHxmmnnRbbtm075D75fD7y+Xyf7fX19RW/YxUO5Cp6eylU6hwMxflk8MyldplNbTKX2lWJuQzq93QUCoX485//HE1NTYNeCAAwspUVHZ/5zGeio6Mjtm/fHr/73e/ikksuia6urrjsssuGan0AwAhR1tsr//znP+P9739/dHZ2xrHHHhtvectbYsOGDXHCCScM1foAgBGirOhYtWrVUK0DABjhfPYKAJCE6AAAkhAdAEASogMASEJ0AABJiA4AIAnRAQAkIToAgCREBwCQhOgAAJIQHQBAEqIDAEhCdAAASYgOACAJ0QEAJCE6AIAkRAcAkIToAACSEB0AQBKiAwBIQnQAAEmIDgAgCdEBACQhOgCAJEQHAJCE6AAAkhAdAEASogMASEJ0AABJiA4AIAnRAQAkIToAgCREBwCQhOgAAJIQHQBAEqIDAEhCdAAASYgOACAJ0QEAJCE6AIAkRAcAkIToAACSEB0AQBKiAwBIQnQAAEmIDgAgCdEBACQhOgCAJEQHAJCE6AAAkhAdAEASogMASEJ0AABJiA4AIAnRAQAkIToAgCREBwCQhOgAAJIQHQBAEqIDAEhiUNGxbNmyyOVycfXVV1doOQDASDXg6Ni4cWPcfPPNMX369EquBwAYoQYUHf/5z3/iAx/4QNxyyy1x9NFHV3pNAMAIVDeQgxYvXhznn39+nHvuuXHdddcddt9CoRCFQqF0uaurKyIiisViFIvFgXz7Q8qPzip6eykM9hwcPL7S55LBMZfaZTa1yVxqVyVnk8uyrKy/qVetWhXXX399bNy4MY444oiYPXt2nH766XHDDTf0u39bW1ssXbq0z/aVK1dGQ0PDgBYNAKTV3d0dixYtij179kRjY+OAbqOs6Ni5c2e0tLTE2rVrY8aMGRERLxkd/b3S0dzcHJ2dnQNe9KFMa3ugoreXwh/b3jGo44vFYrS3t8e8efOivr6+QqtisMyldplNbTKX2nVwNrNmzYqmpqZBRUdZb69s3rw5du3aFTNnzixtO3DgQDz44INx4403RqFQiNGjR/c6Jp/PRz6f73Nb9fX1Fb9jFQ7kKnp7KVTqHAzF+WTwzKV2mU1tMpfaVYm5lBUdc+fOjS1btvTa9uEPfzhOOeWU+NznPtcnOAAADiorOsaNGxfTpk3rtW3s2LExYcKEPtsBAF7MbyQFAJIY0D+ZfbH169dXYBkAwEjnlQ4AIAnRAQAkIToAgCREBwCQhOgAAJIQHQBAEqIDAEhCdAAASYgOACAJ0QEAJCE6AIAkRAcAkIToAACSEB0AQBKiAwBIQnQAAEmIDgAgCdEBACQhOgCAJEQHAJCE6AAAkhAdAEASogMASEJ0AABJiA4AIAnRAQAkIToAgCREBwCQhOgAAJIQHQBAEqIDAEhCdAAASYgOACAJ0QEAJCE6AIAkRAcAkIToAACSEB0AQBKiAwBIQnQAAEmIDgAgCdEBACQhOgCAJEQHAJCE6AAAkhAdAEASogMASEJ0AABJiA4AIAnRAQAkIToAgCREBwCQhOgAAJIQHQBAEqIDAEhCdAAASYgOACAJ0QEAJCE6AIAkyoqOFStWxPTp06OxsTEaGxujtbU1Vq9ePVRrAwBGkLKiY/LkybF8+fLYtGlTbNq0KebMmRMLFy6MrVu3DtX6AIARoq6cnS+88MJel6+//vpYsWJFbNiwIaZOnVrRhQEAI0tZ0fFiBw4ciB//+Mexb9++aG1tPeR+hUIhCoVC6XJXV1dERBSLxSgWiwP99v3Kj84qenspDPYcHDy+0ueSwTGX2mU2tclcalclZ5PLsqysv6m3bNkSra2t8fzzz8erXvWqWLlyZZx33nmH3L+trS2WLl3aZ/vKlSujoaGh/BUDAMl1d3fHokWLYs+ePdHY2Dig2yg7Ol544YXYsWNHPPvss3H33XfHrbfeGh0dHXHqqaf2u39/r3Q0NzdHZ2fngBd9KNPaHqjo7aXwx7Z3DOr4YrEY7e3tMW/evKivr6/Qqg5vOJ7n1PKjsvhqS098adOoKPTkBnw7g71/0Fc1HjO8NHOpXQdnM2vWrGhqahpUdJT99sqYMWPi9a9/fUREtLS0xMaNG+Nb3/pWfPe73+13/3w+H/l8vs/2+vr6it+xCgcG/uReLZU6B0NxPg9lOJ7nain05AZ1vjz5Dp2UjxlePnOpXZWYy6B/T0eWZb1eyQAA6E9Zr3Rcc801sWDBgmhubo69e/fGqlWrYv369bFmzZqhWh8AMEKUFR1PPfVUXHrppfHEE0/E+PHjY/r06bFmzZqYN2/eUK0PABghyoqO733ve0O1DgBghPPZKwBAEqIDAEhCdAAASYgOACAJ0QEAJCE6AIAkRAcAkIToAACSEB0AQBKiAwBIQnQAAEmIDgAgCdEBACQhOgCAJEQHAJCE6AAAkhAdAEASogMASEJ0AABJiA4AIAnRAQAkIToAgCREBwCQhOgAAJIQHQBAEqIDAEhCdAAASYgOACAJ0QEAJCE6AIAkRAcAkIToAACSEB0AQBKiAwBIQnQAAEmIDgAgCdEBACQhOgCAJEQHAJCE6AAAkhAdAEASogMASEJ0AABJiA4AIAnRAQAkIToAgCREBwCQhOgAAJIQHQBAEqIDAEhCdAAASYgOACAJ0QEAJCE6AIAkRAcAkIToAACSEB0AQBKiAwBIQnQAAEmIDgAgibKiY9myZXHGGWfEuHHj4rjjjouLLroo/vrXvw7V2gCAEaSs6Ojo6IjFixfHhg0bor29Pfbv3x/z58+Pffv2DdX6AIARoq6cndesWdPr8m233RbHHXdcbN68Od72trf1e0yhUIhCoVC63NXVFRERxWIxisViues9rPzorKK3l8Jgz8HB4yt9Lg9nOJ7n1PKjsl7/HaiUc32lqMZjhpdmLrWrkrPJZVk24GfFv//973HSSSfFli1bYtq0af3u09bWFkuXLu2zfeXKldHQ0DDQbw0AJNTd3R2LFi2KPXv2RGNj44BuY8DRkWVZLFy4MJ555pn4zW9+c8j9+nulo7m5OTo7Owe86EOZ1vZARW8vhT+2vWNQxxeLxWhvb4958+ZFfX19hVZ1eMPxPKeWH5XFV1t64kubRkWhJ1ft5SQ12Pv0UOvvMTMc79O1fp7LVY3nMl6eg7OZNWtWNDU1DSo6ynp75cWuuOKKePTRR+Ohhx467H75fD7y+Xyf7fX19RW/YxUODL8n90qdg6E4n4cyHM9ztRR6cq+48zVc/sJ48WNmOM5ouJzncqV8LqM8lZjLgKLjyiuvjPvuuy8efPDBmDx58qAXAQCMfGVFR5ZlceWVV8a9994b69evjylTpgzVugCAEaas6Fi8eHGsXLkyfvazn8W4cePiySefjIiI8ePHx5FHHjkkCwQARoayfk/HihUrYs+ePTF79uxoamoqfd11111DtT4AYIQo++0VAICB8NkrAEASogMASEJ0AABJiA4AIAnRAQAkIToAgCREBwCQhOgAAJIQHQBAEqIDAEhCdAAASYgOACAJ0QEAJCE6AIAkRAcAkIToAACSEB0AQBKiAwBIQnQAAEmIDgAgCdEBACQhOgCAJEQHAJCE6AAAkhAdAEASogMASEJ0AABJiA4AIAnRAQAkIToAgCREBwCQhOgAAJIQHQBAEqIDAEhCdAAASYgOACAJ0QEAJCE6AIAkRAcAkIToAACSEB0AQBKiAwBIQnQAAEmIDgAgCdEBACQhOgCAJEQHAJCE6AAAkhAdAEASogMASEJ0AABJiA4AIAnRAQAkIToAgCREBwCQhOgAAJIQHQBAEqIDAEhCdAAASZQdHQ8++GBceOGFMWnSpMjlcvHTn/50CJYFAIw0ZUfHvn37YsaMGXHjjTcOxXoAgBGqrtwDFixYEAsWLBiKtQAAI1jZ0VGuQqEQhUKhdLmrqysiIorFYhSLxYp+r/zorKK3l8Jgz8HB4yt9Lg9nOJ7n1PKjsl7/fSVJeV8ciP4eM8PxPl3r57lc1Xgu4+Wp5GxyWZYN+NGWy+Xi3nvvjYsuuuiQ+7S1tcXSpUv7bF+5cmU0NDQM9FsDAAl1d3fHokWLYs+ePdHY2Dig2xjy6OjvlY7m5ubo7Owc8KIPZVrbAxW9vRT+2PaOQR1fLBajvb095s2bF/X19RVa1eENx/OcWn5UFl9t6YkvbRoVhZ5ctZeT1GDv00Otv8eM+3Qah7tvVOO57OUYjveNSj8GD85m1qxZ0dTUNKjoGPK3V/L5fOTz+T7b6+vrK37HKhwYfk/ulToHQ3E+D2U4nudqKfTkXnHnq5b+wjicFz9mXmkzqpaXc99I+Vz2cgzH+8ZQnb9K3K7f0wEAJFH2Kx3/+c9/4u9//3vp8vbt2+ORRx6JV7/61fGa17ymoosDAEaOsqNj06ZNcc4555QuL1myJCIiLrvssrj99tsrtjAAYGQpOzpmz54dg/jZUwDgFcrPdAAASYgOACAJ0QEAJCE6AIAkRAcAkIToAACSEB0AQBKiAwBIQnQAAEmIDgAgCdEBACQhOgCAJEQHAJCE6AAAkhAdAEASogMASEJ0AABJiA4AIAnRAQAkIToAgCREBwCQhOgAAJIQHQBAEqIDAEhCdAAASYgOACAJ0QEAJCE6AIAkRAcAkIToAACSEB0AQBKiAwBIQnQAAEmIDgAgCdEBACQhOgCAJEQHAJCE6AAAkhAdAEASogMASEJ0AABJiA4AIAnRAQAkIToAgCREBwCQhOgAAJIQHQBAEqIDAEhCdAAASYgOACAJ0QEAJCE6AIAkRAcAkIToAACSEB0AQBKiAwBIQnQAAEmIDgAgCdEBACQxoOi46aabYsqUKXHEEUfEzJkz4ze/+U2l1wUAjDBlR8ddd90VV199dXzxi1+MP/zhD/HWt741FixYEDt27BiK9QEAI0TZ0fHNb34zPvrRj8bHPvaxeOMb3xg33HBDNDc3x4oVK4ZifQDACFFXzs4vvPBCbN68OT7/+c/32j5//vz47W9/2+8xhUIhCoVC6fKePXsiIuLpp5+OYrFY7noPq27/voreXgq7d+8e1PHFYjG6u7tj9+7dUV9fX6FVHd5wPM+p1fVk0d3dE3XFUXGgJ1ft5SQ12Pv0UOvvMeM+ncbh7hvVeC57OYbjfaPSj8GDs3n66acjIiLLsgHfVlnR0dnZGQcOHIjjjz++1/bjjz8+nnzyyX6PWbZsWSxdurTP9ilTppTzrUesY75R7RUwVBZVewFV4j7NobhvpDHU53nv3r0xfvz4AR1bVnQclMv1/n9uWZb12XbQF77whViyZEnpck9PTzz99NMxYcKEQx7Dy9fV1RXNzc2xc+fOaGxsrPZy+D/mUrvMpjaZS+06OJsdO3ZELpeLSZMmDfi2yoqOY445JkaPHt3nVY1du3b1efXjoHw+H/l8vte2o446qrxV8pIaGxs9UGuQudQus6lN5lK7xo8fP+jZlPWDpGPGjImZM2dGe3t7r+3t7e1x5plnDmohAMDIVvbbK0uWLIlLL700WlpaorW1NW6++ebYsWNHXH755UOxPgBghCg7Ot773vfG7t274ytf+Uo88cQTMW3atLj//vvjhBNOGIr18RLy+Xxce+21fd7CorrMpXaZTW0yl9pVydnkssH82xcAgJfJZ68AAEmIDgAgCdEBACQhOgCAJEQHAJCE6BgGli1bFmeccUaMGzcujjvuuLjooovir3/9a699siyLtra2mDRpUhx55JExe/bs2Lp1a5VW/MqwYsWKmD59euk3KLa2tsbq1atL15tJbVi2bFnkcrm4+uqrS9vMpjra2toil8v1+po4cWLpenOprn/961/xwQ9+MCZMmBANDQ1x+umnx+bNm0vXV2I+omMY6OjoiMWLF8eGDRuivb099u/fH/Pnz499+/7/px9+/etfj29+85tx4403xsaNG2PixIkxb9682Lt3bxVXPrJNnjw5li9fHps2bYpNmzbFnDlzYuHChaUHoZlU38aNG+Pmm2+O6dOn99puNtUzderUeOKJJ0pfW7ZsKV1nLtXzzDPPxFlnnRX19fWxevXq+NOf/hTf+MY3en1sSUXmkzHs7Nq1K4uIrKOjI8uyLOvp6ckmTpyYLV++vLTP888/n40fPz77zne+U61lviIdffTR2a233momNWDv3r3ZSSedlLW3t2dvf/vbs6uuuirLMo+Xarr22muzGTNm9HuduVTX5z73uezss88+5PWVmo9XOoahPXv2RETEq1/96oiI2L59ezz55JMxf/780j75fD7e/va3x29/+9uqrPGV5sCBA7Fq1arYt29ftLa2mkkNWLx4cZx//vlx7rnn9tpuNtW1bdu2mDRpUkyZMiXe9773xWOPPRYR5lJt9913X7S0tMR73vOeOO644+JNb3pT3HLLLaXrKzUf0THMZFkWS5YsibPPPjumTZsWEVH61N///aTf448/vs8nAlNZW7ZsiVe96lWRz+fj8ssvj3vvvTdOPfVUM6myVatWxe9///tYtmxZn+vMpnpmzZoV3//+9+OBBx6IW265JZ588sk488wzY/fu3eZSZY899lisWLEiTjrppHjggQfi8ssvj0996lPx/e9/PyIq97gp+7NXqK4rrrgiHn300XjooYf6XJfL5XpdzrKszzYq6w1veEM88sgj8eyzz8bdd98dl112WXR0dJSuN5P0du7cGVdddVWsXbs2jjjiiEPuZzbpLViwoPS/TzvttGhtbY3Xve51cccdd8Rb3vKWiDCXaunp6YmWlpb42te+FhERb3rTm2Lr1q2xYsWK+NCHPlTab7Dz8UrHMHLllVfGfffdF7/+9a9j8uTJpe0Hf/r7f2tz165dfaqUyhozZky8/vWvj5aWlli2bFnMmDEjvvWtb5lJFW3evDl27doVM2fOjLq6uqirq4uOjo749re/HXV1daXzbzbVN3bs2DjttNNi27ZtHjNV1tTUFKeeemqvbW984xtjx44dEVG5v2dExzCQZVlcccUVcc8998SvfvWrmDJlSq/rp0yZEhMnToz29vbSthdeeCE6OjrizDPPTL3cV7Qsy6JQKJhJFc2dOze2bNkSjzzySOmrpaUlPvCBD8QjjzwSr33ta82mRhQKhfjzn/8cTU1NHjNVdtZZZ/X5VQx/+9vfSp8gX7H5DOjHXEnqE5/4RDZ+/Phs/fr12RNPPFH66u7uLu2zfPnybPz48dk999yTbdmyJXv/+9+fNTU1ZV1dXVVc+cj2hS98IXvwwQez7du3Z48++mh2zTXXZKNGjcrWrl2bZZmZ1JIX/+uVLDObavn0pz+drV+/PnvssceyDRs2ZBdccEE2bty47B//+EeWZeZSTQ8//HBWV1eXXX/99dm2bduyO++8M2toaMh+8IMflPapxHxExzAQEf1+3XbbbaV9enp6smuvvTabOHFils/ns7e97W3Zli1bqrfoV4CPfOQj2QknnJCNGTMmO/bYY7O5c+eWgiPLzKSW/G90mE11vPe9782ampqy+vr6bNKkSdnFF1+cbd26tXS9uVTXz3/+82zatGlZPp/PTjnllOzmm2/udX0l5pPLsiwb5KsyAAAvyc90AABJiA4AIAnRAQAkIToAgCREBwCQhOgAAJIQHQBAEqIDAEhCdAAASYgOACAJ0QEAJPH/AGG7WKqg+kYhAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# a teraz sprawdzimy, czy wiek miał tutaj znaczenie w powyższym zjawisku\n",
"\n",
"df5[['wiek']].hist()\n"
]
},
{
"cell_type": "markdown",
"id": "5f76fd1c-1a82-4094-ae40-281ffdd300d2",
"metadata": {},
"source": [
"Okazuje się, że to również może mieć znaczenie. Czyżby młodszy organizm to silniejszy i wytrzymalszy?\n",
"Ale liczna tych próbek jest jednak zbyt mała, aby wyciągać jakieś wnioski."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}